forked from DarkMorford/alac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathALACDecoder.cpp
730 lines (623 loc) · 25.6 KB
/
ALACDecoder.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
/*
* Copyright (c) 2011 Apple Inc. All rights reserved.
*
* @APPLE_APACHE_LICENSE_HEADER_START@
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* @APPLE_APACHE_LICENSE_HEADER_END@
*/
/*
File: ALACDecoder.cpp
*/
#include <stdlib.h>
#include <string.h>
#include "ALACDecoder.h"
#include "dplib.h"
#include "aglib.h"
#include "matrixlib.h"
#include "ALACBitUtilities.h"
#include "EndianPortable.h"
// constants/data
const uint32_t kMaxBitDepth = 32; // max allowed bit depth is 32
// prototypes
static void Zero16( int16_t * buffer, uint32_t numItems, uint32_t stride );
static void Zero24( uint8_t * buffer, uint32_t numItems, uint32_t stride );
static void Zero32( int32_t * buffer, uint32_t numItems, uint32_t stride );
/*
Constructor
*/
ALACDecoder::ALACDecoder() :
mMixBufferU( nil ),
mMixBufferV( nil ),
mPredictor( nil ),
mShiftBuffer( nil )
{
memset( &mConfig, 0, sizeof(mConfig) );
}
/*
Destructor
*/
ALACDecoder::~ALACDecoder()
{
// delete the matrix mixing buffers
if ( mMixBufferU )
{
free(mMixBufferU);
mMixBufferU = NULL;
}
if ( mMixBufferV )
{
free(mMixBufferV);
mMixBufferV = NULL;
}
// delete the dynamic predictor's "corrector" buffer
// - note: mShiftBuffer shares memory with this buffer
if ( mPredictor )
{
free(mPredictor);
mPredictor = NULL;
}
}
/*
Init()
- initialize the decoder with the given configuration
*/
int32_t ALACDecoder::Init( void * inMagicCookie, uint32_t inMagicCookieSize )
{
int32_t status = ALAC_noErr;
ALACSpecificConfig theConfig;
uint8_t * theActualCookie = (uint8_t *)inMagicCookie;
uint32_t theCookieBytesRemaining = inMagicCookieSize;
// For historical reasons the decoder needs to be resilient to magic cookies vended by older encoders.
// As specified in the ALACMagicCookieDescription.txt document, there may be additional data encapsulating
// the ALACSpecificConfig. This would consist of format ('frma') and 'alac' atoms which precede the
// ALACSpecificConfig.
// See ALACMagicCookieDescription.txt for additional documentation concerning the 'magic cookie'
// skip format ('frma') atom if present
if (theActualCookie[4] == 'f' && theActualCookie[5] == 'r' && theActualCookie[6] == 'm' && theActualCookie[7] == 'a')
{
theActualCookie += 12;
theCookieBytesRemaining -= 12;
}
// skip 'alac' atom header if present
if (theActualCookie[4] == 'a' && theActualCookie[5] == 'l' && theActualCookie[6] == 'a' && theActualCookie[7] == 'c')
{
theActualCookie += 12;
theCookieBytesRemaining -= 12;
}
// read the ALACSpecificConfig
if (theCookieBytesRemaining >= sizeof(ALACSpecificConfig))
{
theConfig.frameLength = Swap32BtoN(((ALACSpecificConfig *)theActualCookie)->frameLength);
theConfig.compatibleVersion = ((ALACSpecificConfig *)theActualCookie)->compatibleVersion;
theConfig.bitDepth = ((ALACSpecificConfig *)theActualCookie)->bitDepth;
theConfig.pb = ((ALACSpecificConfig *)theActualCookie)->pb;
theConfig.mb = ((ALACSpecificConfig *)theActualCookie)->mb;
theConfig.kb = ((ALACSpecificConfig *)theActualCookie)->kb;
theConfig.numChannels = ((ALACSpecificConfig *)theActualCookie)->numChannels;
theConfig.maxRun = Swap16BtoN(((ALACSpecificConfig *)theActualCookie)->maxRun);
theConfig.maxFrameBytes = Swap32BtoN(((ALACSpecificConfig *)theActualCookie)->maxFrameBytes);
theConfig.avgBitRate = Swap32BtoN(((ALACSpecificConfig *)theActualCookie)->avgBitRate);
theConfig.sampleRate = Swap32BtoN(((ALACSpecificConfig *)theActualCookie)->sampleRate);
mConfig = theConfig;
RequireAction( mConfig.compatibleVersion <= kALACVersion, return kALAC_ParamError; );
// allocate mix buffers
mMixBufferU = (int32_t *) calloc( mConfig.frameLength * sizeof(int32_t), 1 );
mMixBufferV = (int32_t *) calloc( mConfig.frameLength * sizeof(int32_t), 1 );
// allocate dynamic predictor buffer
mPredictor = (int32_t *) calloc( mConfig.frameLength * sizeof(int32_t), 1 );
// "shift off" buffer shares memory with predictor buffer
mShiftBuffer = (uint16_t *) mPredictor;
RequireAction( (mMixBufferU != nil) && (mMixBufferV != nil) && (mPredictor != nil),
status = kALAC_MemFullError; goto Exit; );
}
else
{
status = kALAC_ParamError;
}
// skip to Channel Layout Info
// theActualCookie += sizeof(ALACSpecificConfig);
// Currently, the Channel Layout Info portion of the magic cookie (as defined in the
// ALACMagicCookieDescription.txt document) is unused by the decoder.
Exit:
return status;
}
/*
Decode()
- the decoded samples are interleaved into the output buffer in the order they arrive in
the bitstream
*/
int32_t ALACDecoder::Decode( BitBuffer * bits, uint8_t * sampleBuffer, uint32_t numSamples, uint32_t numChannels, uint32_t * outNumSamples )
{
BitBuffer shiftBits;
uint32_t bits1, bits2;
uint8_t tag;
uint8_t elementInstanceTag;
AGParamRec agParams;
uint32_t channelIndex;
int16_t coefsU[32]; // max possible size is 32 although NUMCOEPAIRS is the current limit
int16_t coefsV[32];
uint8_t numU, numV;
uint8_t mixBits;
int8_t mixRes;
uint16_t unusedHeader;
uint8_t escapeFlag;
uint32_t chanBits;
uint8_t bytesShifted;
uint32_t shift;
uint8_t modeU, modeV;
uint32_t denShiftU, denShiftV;
uint16_t pbFactorU, pbFactorV;
uint16_t pb;
int16_t * samples;
int16_t * out16;
uint8_t * out20;
uint8_t * out24;
int32_t * out32;
uint8_t headerByte;
uint8_t partialFrame;
uint32_t extraBits;
int32_t val;
uint32_t i, j;
int32_t status;
RequireAction( (bits != nil) && (sampleBuffer != nil) && (outNumSamples != nil), return kALAC_ParamError; );
RequireAction( numChannels > 0, return kALAC_ParamError; );
mActiveElements = 0;
channelIndex = 0;
samples = (int16_t *) sampleBuffer;
status = ALAC_noErr;
*outNumSamples = numSamples;
while ( status == ALAC_noErr )
{
// bail if we ran off the end of the buffer
RequireAction( bits->cur < bits->end, status = kALAC_ParamError; goto Exit; );
// copy global decode params for this element
pb = mConfig.pb;
// read element tag
tag = BitBufferReadSmall( bits, 3 );
switch ( tag )
{
case ID_SCE:
case ID_LFE:
{
// mono/LFE channel
elementInstanceTag = BitBufferReadSmall( bits, 4 );
mActiveElements |= (1u << elementInstanceTag);
// read the 12 unused header bits
unusedHeader = (uint16_t) BitBufferRead( bits, 12 );
RequireAction( unusedHeader == 0, status = kALAC_ParamError; goto Exit; );
// read the 1-bit "partial frame" flag, 2-bit "shift-off" flag & 1-bit "escape" flag
headerByte = (uint8_t) BitBufferRead( bits, 4 );
partialFrame = headerByte >> 3;
bytesShifted = (headerByte >> 1) & 0x3u;
RequireAction( bytesShifted != 3, status = kALAC_ParamError; goto Exit; );
shift = bytesShifted * 8;
escapeFlag = headerByte & 0x1;
chanBits = mConfig.bitDepth - (bytesShifted * 8);
// check for partial frame to override requested numSamples
if ( partialFrame != 0 )
{
numSamples = BitBufferRead( bits, 16 ) << 16;
numSamples |= BitBufferRead( bits, 16 );
}
if ( escapeFlag == 0 )
{
// compressed frame, read rest of parameters
mixBits = (uint8_t) BitBufferRead( bits, 8 );
mixRes = (int8_t) BitBufferRead( bits, 8 );
//Assert( (mixBits == 0) && (mixRes == 0) ); // no mixing for mono
headerByte = (uint8_t) BitBufferRead( bits, 8 );
modeU = headerByte >> 4;
denShiftU = headerByte & 0xfu;
headerByte = (uint8_t) BitBufferRead( bits, 8 );
pbFactorU = headerByte >> 5;
numU = headerByte & 0x1fu;
for ( i = 0; i < numU; i++ )
coefsU[i] = (int16_t) BitBufferRead( bits, 16 );
// if shift active, skip the the shift buffer but remember where it starts
if ( bytesShifted != 0 )
{
shiftBits = *bits;
BitBufferAdvance( bits, (bytesShifted * 8) * numSamples );
}
// decompress
set_ag_params( &agParams, mConfig.mb, (pb * pbFactorU) / 4, mConfig.kb, numSamples, numSamples, mConfig.maxRun );
status = dyn_decomp( &agParams, bits, mPredictor, numSamples, chanBits, &bits1 );
RequireNoErr( status, goto Exit; );
if ( modeU == 0 )
{
unpc_block( mPredictor, mMixBufferU, numSamples, &coefsU[0], numU, chanBits, denShiftU );
}
else
{
// the special "numActive == 31" mode can be done in-place
unpc_block( mPredictor, mPredictor, numSamples, nil, 31, chanBits, 0 );
unpc_block( mPredictor, mMixBufferU, numSamples, &coefsU[0], numU, chanBits, denShiftU );
}
}
else
{
//Assert( bytesShifted == 0 );
// uncompressed frame, copy data into the mix buffer to use common output code
shift = 32 - chanBits;
if ( chanBits <= 16 )
{
for ( i = 0; i < numSamples; i++ )
{
val = (int32_t) BitBufferRead( bits, (uint8_t) chanBits );
val = (val << shift) >> shift;
mMixBufferU[i] = val;
}
}
else
{
// BitBufferRead() can't read more than 16 bits at a time so break up the reads
extraBits = chanBits - 16;
for ( i = 0; i < numSamples; i++ )
{
val = (int32_t) BitBufferRead( bits, 16 );
val = (val << 16) >> shift;
mMixBufferU[i] = val | BitBufferRead( bits, (uint8_t) extraBits );
}
}
mixBits = mixRes = 0;
bits1 = chanBits * numSamples;
bytesShifted = 0;
}
// now read the shifted values into the shift buffer
if ( bytesShifted != 0 )
{
shift = bytesShifted * 8;
//Assert( shift <= 16 );
for ( i = 0; i < numSamples; i++ )
mShiftBuffer[i] = (uint16_t) BitBufferRead( &shiftBits, (uint8_t) shift );
}
// convert 32-bit integers into output buffer
switch ( mConfig.bitDepth )
{
case 16:
out16 = &((int16_t *)sampleBuffer)[channelIndex];
for ( i = 0, j = 0; i < numSamples; i++, j += numChannels )
out16[j] = (int16_t) mMixBufferU[i];
break;
case 20:
out20 = (uint8_t *)sampleBuffer + (channelIndex * 3);
copyPredictorTo20( mMixBufferU, out20, numChannels, numSamples );
break;
case 24:
out24 = (uint8_t *)sampleBuffer + (channelIndex * 3);
if ( bytesShifted != 0 )
copyPredictorTo24Shift( mMixBufferU, mShiftBuffer, out24, numChannels, numSamples, bytesShifted );
else
copyPredictorTo24( mMixBufferU, out24, numChannels, numSamples );
break;
case 32:
out32 = &((int32_t *)sampleBuffer)[channelIndex];
if ( bytesShifted != 0 )
copyPredictorTo32Shift( mMixBufferU, mShiftBuffer, out32, numChannels, numSamples, bytesShifted );
else
copyPredictorTo32( mMixBufferU, out32, numChannels, numSamples);
break;
}
channelIndex += 1;
*outNumSamples = numSamples;
break;
}
case ID_CPE:
{
// if decoding this pair would take us over the max channels limit, bail
if ( (channelIndex + 2) > numChannels )
goto NoMoreChannels;
// stereo channel pair
elementInstanceTag = BitBufferReadSmall( bits, 4 );
mActiveElements |= (1u << elementInstanceTag);
// read the 12 unused header bits
unusedHeader = (uint16_t) BitBufferRead( bits, 12 );
RequireAction( unusedHeader == 0, status = kALAC_ParamError; goto Exit; );
// read the 1-bit "partial frame" flag, 2-bit "shift-off" flag & 1-bit "escape" flag
headerByte = (uint8_t) BitBufferRead( bits, 4 );
partialFrame = headerByte >> 3;
bytesShifted = (headerByte >> 1) & 0x3u;
RequireAction( bytesShifted != 3, status = kALAC_ParamError; goto Exit; );
shift = bytesShifted * 8;
escapeFlag = headerByte & 0x1;
chanBits = mConfig.bitDepth - (bytesShifted * 8) + 1;
// check for partial frame length to override requested numSamples
if ( partialFrame != 0 )
{
numSamples = BitBufferRead( bits, 16 ) << 16;
numSamples |= BitBufferRead( bits, 16 );
}
if ( escapeFlag == 0 )
{
// compressed frame, read rest of parameters
mixBits = (uint8_t) BitBufferRead( bits, 8 );
mixRes = (int8_t) BitBufferRead( bits, 8 );
headerByte = (uint8_t) BitBufferRead( bits, 8 );
modeU = headerByte >> 4;
denShiftU = headerByte & 0xfu;
headerByte = (uint8_t) BitBufferRead( bits, 8 );
pbFactorU = headerByte >> 5;
numU = headerByte & 0x1fu;
for ( i = 0; i < numU; i++ )
coefsU[i] = (int16_t) BitBufferRead( bits, 16 );
headerByte = (uint8_t) BitBufferRead( bits, 8 );
modeV = headerByte >> 4;
denShiftV = headerByte & 0xfu;
headerByte = (uint8_t) BitBufferRead( bits, 8 );
pbFactorV = headerByte >> 5;
numV = headerByte & 0x1fu;
for ( i = 0; i < numV; i++ )
coefsV[i] = (int16_t) BitBufferRead( bits, 16 );
// if shift active, skip the interleaved shifted values but remember where they start
if ( bytesShifted != 0 )
{
shiftBits = *bits;
BitBufferAdvance( bits, (bytesShifted * 8) * 2 * numSamples );
}
// decompress and run predictor for "left" channel
set_ag_params( &agParams, mConfig.mb, (pb * pbFactorU) / 4, mConfig.kb, numSamples, numSamples, mConfig.maxRun );
status = dyn_decomp( &agParams, bits, mPredictor, numSamples, chanBits, &bits1 );
RequireNoErr( status, goto Exit; );
if ( modeU == 0 )
{
unpc_block( mPredictor, mMixBufferU, numSamples, &coefsU[0], numU, chanBits, denShiftU );
}
else
{
// the special "numActive == 31" mode can be done in-place
unpc_block( mPredictor, mPredictor, numSamples, nil, 31, chanBits, 0 );
unpc_block( mPredictor, mMixBufferU, numSamples, &coefsU[0], numU, chanBits, denShiftU );
}
// decompress and run predictor for "right" channel
set_ag_params( &agParams, mConfig.mb, (pb * pbFactorV) / 4, mConfig.kb, numSamples, numSamples, mConfig.maxRun );
status = dyn_decomp( &agParams, bits, mPredictor, numSamples, chanBits, &bits2 );
RequireNoErr( status, goto Exit; );
if ( modeV == 0 )
{
unpc_block( mPredictor, mMixBufferV, numSamples, &coefsV[0], numV, chanBits, denShiftV );
}
else
{
// the special "numActive == 31" mode can be done in-place
unpc_block( mPredictor, mPredictor, numSamples, nil, 31, chanBits, 0 );
unpc_block( mPredictor, mMixBufferV, numSamples, &coefsV[0], numV, chanBits, denShiftV );
}
}
else
{
//Assert( bytesShifted == 0 );
// uncompressed frame, copy data into the mix buffers to use common output code
chanBits = mConfig.bitDepth;
shift = 32 - chanBits;
if ( chanBits <= 16 )
{
for ( i = 0; i < numSamples; i++ )
{
val = (int32_t) BitBufferRead( bits, (uint8_t) chanBits );
val = (val << shift) >> shift;
mMixBufferU[i] = val;
val = (int32_t) BitBufferRead( bits, (uint8_t) chanBits );
val = (val << shift) >> shift;
mMixBufferV[i] = val;
}
}
else
{
// BitBufferRead() can't read more than 16 bits at a time so break up the reads
extraBits = chanBits - 16;
for ( i = 0; i < numSamples; i++ )
{
val = (int32_t) BitBufferRead( bits, 16 );
val = (val << 16) >> shift;
mMixBufferU[i] = val | BitBufferRead( bits, (uint8_t)extraBits );
val = (int32_t) BitBufferRead( bits, 16 );
val = (val << 16) >> shift;
mMixBufferV[i] = val | BitBufferRead( bits, (uint8_t)extraBits );
}
}
bits1 = chanBits * numSamples;
bits2 = chanBits * numSamples;
mixBits = mixRes = 0;
bytesShifted = 0;
}
// now read the shifted values into the shift buffer
if ( bytesShifted != 0 )
{
shift = bytesShifted * 8;
//Assert( shift <= 16 );
for ( i = 0; i < (numSamples * 2); i += 2 )
{
mShiftBuffer[i + 0] = (uint16_t) BitBufferRead( &shiftBits, (uint8_t) shift );
mShiftBuffer[i + 1] = (uint16_t) BitBufferRead( &shiftBits, (uint8_t) shift );
}
}
// un-mix the data and convert to output format
// - note that mixRes = 0 means just interleave so we use that path for uncompressed frames
switch ( mConfig.bitDepth )
{
case 16:
out16 = &((int16_t *)sampleBuffer)[channelIndex];
unmix16( mMixBufferU, mMixBufferV, out16, numChannels, numSamples, mixBits, mixRes );
break;
case 20:
out20 = (uint8_t *)sampleBuffer + (channelIndex * 3);
unmix20( mMixBufferU, mMixBufferV, out20, numChannels, numSamples, mixBits, mixRes );
break;
case 24:
out24 = (uint8_t *)sampleBuffer + (channelIndex * 3);
unmix24( mMixBufferU, mMixBufferV, out24, numChannels, numSamples,
mixBits, mixRes, mShiftBuffer, bytesShifted );
break;
case 32:
out32 = &((int32_t *)sampleBuffer)[channelIndex];
unmix32( mMixBufferU, mMixBufferV, out32, numChannels, numSamples,
mixBits, mixRes, mShiftBuffer, bytesShifted );
break;
}
channelIndex += 2;
*outNumSamples = numSamples;
break;
}
case ID_CCE:
case ID_PCE:
{
// unsupported element, bail
//AssertNoErr( tag );
status = kALAC_ParamError;
break;
}
case ID_DSE:
{
// data stream element -- parse but ignore
status = this->DataStreamElement( bits );
break;
}
case ID_FIL:
{
// fill element -- parse but ignore
status = this->FillElement( bits );
break;
}
case ID_END:
{
// frame end, all done so byte align the frame and check for overruns
BitBufferByteAlign( bits, false );
//Assert( bits->cur == bits->end );
goto Exit;
}
}
#if ! DEBUG
// if we've decoded all of our channels, bail (but not in debug b/c we want to know if we're seeing bad bits)
// - this also protects us if the config does not match the bitstream or crap data bits follow the audio bits
if ( channelIndex >= numChannels )
break;
#endif
}
NoMoreChannels:
// if we get here and haven't decoded all of the requested channels, fill the remaining channels with zeros
for ( ; channelIndex < numChannels; channelIndex++ )
{
switch ( mConfig.bitDepth )
{
case 16:
{
int16_t * fill16 = &((int16_t *)sampleBuffer)[channelIndex];
Zero16( fill16, numSamples, numChannels );
break;
}
case 24:
{
uint8_t * fill24 = (uint8_t *)sampleBuffer + (channelIndex * 3);
Zero24( fill24, numSamples, numChannels );
break;
}
case 32:
{
int32_t * fill32 = &((int32_t *)sampleBuffer)[channelIndex];
Zero32( fill32, numSamples, numChannels );
break;
}
}
}
Exit:
return status;
}
#if PRAGMA_MARK
#pragma mark -
#endif
/*
FillElement()
- they're just filler so we don't need 'em
*/
int32_t ALACDecoder::FillElement( BitBuffer * bits )
{
int16_t count;
// 4-bit count or (4-bit + 8-bit count) if 4-bit count == 15
// - plus this weird -1 thing I still don't fully understand
count = BitBufferReadSmall( bits, 4 );
if ( count == 15 )
count += (int16_t) BitBufferReadSmall( bits, 8 ) - 1;
BitBufferAdvance( bits, count * 8 );
RequireAction( bits->cur <= bits->end, return kALAC_ParamError; );
return ALAC_noErr;
}
/*
DataStreamElement()
- we don't care about data stream elements so just skip them
*/
int32_t ALACDecoder::DataStreamElement( BitBuffer * bits )
{
uint8_t element_instance_tag;
int32_t data_byte_align_flag;
uint16_t count;
// the tag associates this data stream element with a given audio element
element_instance_tag = BitBufferReadSmall( bits, 4 );
data_byte_align_flag = BitBufferReadOne( bits );
// 8-bit count or (8-bit + 8-bit count) if 8-bit count == 255
count = BitBufferReadSmall( bits, 8 );
if ( count == 255 )
count += BitBufferReadSmall( bits, 8 );
// the align flag means the bitstream should be byte-aligned before reading the following data bytes
if ( data_byte_align_flag )
BitBufferByteAlign( bits, false );
// skip the data bytes
BitBufferAdvance( bits, count * 8 );
RequireAction( bits->cur <= bits->end, return kALAC_ParamError; );
return ALAC_noErr;
}
/*
ZeroN()
- helper routines to clear out output channel buffers when decoding fewer channels than requested
*/
static void Zero16( int16_t * buffer, uint32_t numItems, uint32_t stride )
{
if ( stride == 1 )
{
memset( buffer, 0, numItems * sizeof(int16_t) );
}
else
{
for ( uint32_t index = 0; index < (numItems * stride); index += stride )
buffer[index] = 0;
}
}
static void Zero24( uint8_t * buffer, uint32_t numItems, uint32_t stride )
{
if ( stride == 1 )
{
memset( buffer, 0, numItems * 3 );
}
else
{
for ( uint32_t index = 0; index < (numItems * stride * 3); index += (stride * 3) )
{
buffer[index + 0] = 0;
buffer[index + 1] = 0;
buffer[index + 2] = 0;
}
}
}
static void Zero32( int32_t * buffer, uint32_t numItems, uint32_t stride )
{
if ( stride == 1 )
{
memset( buffer, 0, numItems * sizeof(int32_t) );
}
else
{
for ( uint32_t index = 0; index < (numItems * stride); index += stride )
buffer[index] = 0;
}
}