forked from tencent-alchemy/Alchemy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmpnn.py
135 lines (106 loc) · 4.36 KB
/
mpnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/usr/bin/env python
# encoding: utf-8
# File Name: mpnn.py
# Author: Jiezhong Qiu
# Create Time: 2019/04/23 17:38
# TODO:
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch_geometric.transforms as T
from Alchemy_dataset import TencentAlchemyDataset
from torch_geometric.nn import NNConv, Set2Set
from torch_geometric.data import DataLoader
from torch_geometric.utils import remove_self_loops
import pandas as pd
class Complete(object):
def __call__(self, data):
device = data.edge_index.device
row = torch.arange(data.num_nodes, dtype=torch.long, device=device)
col = torch.arange(data.num_nodes, dtype=torch.long, device=device)
row = row.view(-1, 1).repeat(1, data.num_nodes).view(-1)
col = col.repeat(data.num_nodes)
edge_index = torch.stack([row, col], dim=0)
edge_attr = None
if data.edge_attr is not None:
idx = data.edge_index[0] * data.num_nodes + data.edge_index[1]
size = list(data.edge_attr.size())
size[0] = data.num_nodes * data.num_nodes
edge_attr = data.edge_attr.new_zeros(size)
edge_attr[idx] = data.edge_attr
edge_index, edge_attr = remove_self_loops(edge_index, edge_attr)
data.edge_attr = edge_attr
data.edge_index = edge_index
return data
transform = T.Compose([Complete(), T.Distance(norm=False)])
train_dataset = TencentAlchemyDataset(root='data-bin', mode='dev', transform=transform).shuffle()
valid_dataset = TencentAlchemyDataset(root='data-bin', mode='valid', transform=transform)
valid_loader = DataLoader(valid_dataset, batch_size=64)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
class MPNN(torch.nn.Module):
def __init__(self,
node_input_dim=15,
edge_input_dim=5,
output_dim=12,
node_hidden_dim=64,
edge_hidden_dim=128,
num_step_message_passing=6,
num_step_set2set=6):
super(MPNN, self).__init__()
self.num_step_message_passing = num_step_message_passing
self.lin0 = nn.Linear(node_input_dim, node_hidden_dim)
edge_network = nn.Sequential(
nn.Linear(edge_input_dim, edge_hidden_dim),
nn.ReLU(),
nn.Linear(edge_hidden_dim, node_hidden_dim * node_hidden_dim)
)
self.conv = NNConv(node_hidden_dim, node_hidden_dim, edge_network, aggr='mean', root_weight=False)
self.gru = nn.GRU(node_hidden_dim, node_hidden_dim)
self.set2set = Set2Set(node_hidden_dim, processing_steps=num_step_set2set)
self.lin1 = nn.Linear(2 * node_hidden_dim, node_hidden_dim)
self.lin2 = nn.Linear(node_hidden_dim, output_dim)
def forward(self, data):
out = F.relu(self.lin0(data.x))
h = out.unsqueeze(0)
for i in range(self.num_step_message_passing):
m = F.relu(self.conv(out, data.edge_index, data.edge_attr))
out, h = self.gru(m.unsqueeze(0), h)
out = out.squeeze(0)
out = self.set2set(out, data.batch)
out = F.relu(self.lin1(out))
out = self.lin2(out)
return out
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = MPNN(node_input_dim=train_dataset.num_features).to(device)
print(model)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
def train(epoch):
model.train()
loss_all = 0
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
y_model = model(data)
loss = F.mse_loss(y_model, data.y)
loss.backward()
loss_all += loss.item() * data.num_graphs
optimizer.step()
return loss_all / len(train_loader.dataset)
def test(loader):
model.eval()
targets = dict()
for data in loader:
data = data.to(device)
y_pred = model(data)
for i in range(len(data.y)):
targets[data.y[i].item()] = y_pred[i].tolist()
return targets
epoch = 1
print("training...")
for epoch in range(epoch):
loss = train(epoch)
print('Epoch: {:03d}, Loss: {:.7f}'.format(epoch, loss))
targets = test(valid_loader)
df_targets = pd.DataFrame.from_dict(targets, orient="index", columns=['property_%d' % x for x in range(12)])
df_targets.sort_index(inplace=True)
df_targets.to_csv('targets.csv', index_label='gdb_idx')