forked from epfl-dlab/llm-latent-language
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
executable file
·227 lines (192 loc) · 7.22 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import json
import gzip
import _pickle as pickle
import logging
import yaml
import json
from logging import Logger
import re
from datetime import datetime
import os
import pytz
from matplotlib import pyplot as plt
import seaborn as sns
from scipy.stats import bootstrap
import numpy as np
import pandas as pd
plt.rcParams.update({
'font.size': 16
})
plt_params = {'linewidth': 2.2}
def plot_ci_plus_heatmap(data, heat, labels,
color='blue',
linestyle='-',
tik_step=10,
method='gaussian',
do_lines=True,
do_colorbar=False,
shift=0.5,
nums = [.99, 0.18, 0.025, 0.6],
labelpad=10,
plt_params=plt_params):
fig, (ax, ax2) = plt.subplots(nrows=2, sharex=True, gridspec_kw={'height_ratios': [1, 10]}, figsize=(5, 3))
if do_colorbar:
fig.subplots_adjust(right=0.8)
plot_ci(ax2, data, labels, color=color, linestyle=linestyle, tik_step=tik_step, method=method, do_lines=do_lines, plt_params=plt_params)
y = heat.mean(dim=0)
x = np.arange(y.shape[0])+1
extent = [x[0]-(x[1]-x[0])/2. - shift, x[-1]+(x[1]-x[0])/2. + shift, 0, 1]
img =ax.imshow(y[np.newaxis,:], cmap="plasma", aspect="auto", extent=extent, vmin=0, vmax=14)
ax.set_yticks([])
#ax.set_xlim(extent[0], extent[1])
if do_colorbar:
cbar_ax = fig.add_axes(nums) # Adjust these values as needed
cbar = plt.colorbar(img, cax=cbar_ax)
cbar.set_label('entropy', rotation=90, labelpad=labelpad) # Adjust label and properties as needed
plt.tight_layout()
return fig, ax, ax2
def process_axis(ax, ylabel_font=13, xlabel_font=13):
ax.spines[['right', 'top']].set_visible(False)
#ax.set_ylabel(ylabel, fontsize=ylabel_font)
#ax.set_xlabel(xlabel, fontsize=xlabel_font)
def plot_ci(ax, data, label, color='blue', linestyle='-', tik_step=10, method='gaussian', do_lines=True, plt_params=plt_params):
if do_lines:
upper = max(round(data.shape[1]/10)*10+1, data.shape[1]+1)
ax.set_xticks(np.arange(0, upper, tik_step))
for i in range(0, upper, tik_step):
ax.axvline(i, color='black', linestyle='--', alpha=0.2, linewidth=1)
if method == 'gaussian':
mean = data.mean(dim=0)
std = data.std(dim=0)
data_ci = {
'x' : np.arange(data.shape[1])+1,
'y' : mean,
'y_upper' : mean + (1.96/(data.shape[0]**0.5)) * std,
'y_lower' : mean - (1.96/(data.shape[0]**0.5)) * std,
}
elif method == 'np':
data_ci = {
'x' : np.arange(data.shape[1])+1,
'y' : np.quantile(data, 0.5, axis=0),
'y_upper' : np.quantile(data, 0.95, axis=0),
'y_lower' : np.quantile(data, 0.05, axis=0),
}
elif method == 'bootstrap':
bootstrap_ci = bootstrap((data,), np.mean, confidence_level=0.95, method='percentile')
data_ci = {
'x' : np.arange(data.shape[1])+1,
'y' : data.mean(axis=0),
'y_upper' : bootstrap_ci.confidence_interval.high,
'y_lower' : bootstrap_ci.confidence_interval.low,
}
else:
raise ValueError('method not implemented')
df = pd.DataFrame(data_ci)
# Create the line plot with confidence intervals
ax.plot(df['x'], df['y'], label=label, color=color, linestyle=linestyle, **plt_params)
ax.fill_between(df['x'], df['y_lower'], df['y_upper'], color=color, alpha=0.3)
process_axis(ax)
def yaml_to_dict(yaml_file):
with open(yaml_file, 'r') as file:
return yaml.safe_load(file)
def save_pickle(file, path):
with open(path, 'wb') as f:
pickle.dump(file, f)
def load_pickle(path):
if path.endswith('gz'):
with gzip.open(path, 'rb') as f:
return pickle.load(f)
with open(path, 'rb') as f:
return pickle.load(f)
def printr(text):
print(f'[running]: {text}')
def save_json(data: object, json_path: str) -> None:
os.makedirs(os.path.dirname(json_path), exist_ok=True)
with open(json_path, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=4)
def prepare_output_dir(base_dir: str = "./runs/") -> str:
# create output directory based on current time (using zurich time zone)
experiment_dir = os.path.join(
base_dir, datetime.now(tz=pytz.timezone("Europe/Zurich")).strftime("%Y-%m-%d_%H-%M-%S")
)
os.makedirs(experiment_dir, exist_ok=True)
return experiment_dir
def get_logger(output_dir) -> Logger:
os.makedirs(os.path.dirname(LOG_DIR), exist_ok=True)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(filename)s - %(levelname)s - %(message)s")
# Log to console
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
ch.setFormatter(formatter)
logger.addHandler(ch)
# Log to file
file_path = os.path.join(LOG_DIR, f'{datetime.now().strftime("%Y-%m-%d_%H:%M:%S")}.log')
fh = logging.FileHandler(os.path.join(output_dir, "log.txt"))
fh.setLevel(logging.INFO)
fh.setFormatter(formatter)
logger.addHandler(fh)
return logger
def get_api_key(fname, provider='azure', key=None):
print(fname)
try:
with open(fname) as f:
keys = json.load(f)[provider]
if key is not None:
api_key = keys[key]
else:
api_key = list(keys.values())[0]
except Exception as e:
print(f'error: unable to load {provider} api key {key} from file {fname} - {e}')
return None
return api_key
def read_json(path_name: str):
with open(path_name, "r") as f:
json_file = json.load(f)
return json_file
def printv(msg, v=0, v_min=0, c=None, debug=False):
# convenience print function
if debug:
c = 'yellow' if c is None else c
v, v_min = 1, 0
printc('\n\n>>>>>>>>>>>>>>>>>>>>>>START DEBUG\n\n', c='yellow')
if (v > v_min) or debug:
if c is not None:
printc(msg, c=c)
else:
print(msg)
if debug:
printc('\n\nEND DEBUG<<<<<<<<<<<<<<<<<<<<<<<<\n\n', c='yellow')
def printc(x, c='r'):
m1 = {'r': 'red', 'g': 'green', 'y': 'yellow', 'w': 'white',
'b': 'blue', 'p': 'pink', 't': 'teal', 'gr': 'gray'}
m2 = {
'red': '\033[91m',
'green': '\033[92m',
'yellow': '\033[93m',
'blue': '\033[94m',
'pink': '\033[95m',
'teal': '\033[96m',
'white': '\033[97m',
'gray': '\033[90m'
}
reset_color = '\033[0m'
print(f'{m2.get(m1.get(c, c), c)}{x}{reset_color}')
def extract_dictionary(x):
if isinstance(x, str):
regex = r"{.*?}"
match = re.search(regex, x, re.MULTILINE | re.DOTALL)
if match:
try:
json_str = match.group()
json_str = json_str.replace("'", '"')
dict_ = json.loads(json_str)
return dict_
except Exception as e:
print(f"unable to extract dictionary - {e}")
return None
else:
return None
else:
return None