forked from yell/boltzmann-machines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrbm_mnist.py
241 lines (214 loc) · 11.1 KB
/
rbm_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Train Bernoulli-Bernoulli RBM on MNIST dataset and use for classification.
Momentum is initially 0.5 and gradually increases to 0.9.
Training time is approx. 2.5 times faster using single-precision rather than double
with negligible difference in reconstruction error, pseudo log-likelihood is slightly
more noisy at the beginning of training though.
Per sample validation pseudo log-likelihood is -0.08 after 28 epochs and -0.017 after 110
epochs. It still slightly underfitting at that point, though (free energy gap at the end
of training is -1.4 < 0). Average validation mean reconstruction error monotonically
decreases during training and is about 7.39e-3 at the end.
The training took approx. 38 min on GTX 1060.
After the model is trained, it is discriminatively fine-tuned.
The code uses early stopping so max number of MLP epochs is often not reached.
It achieves 1.27% misclassification rate on the test set.
"""
print __doc__
import os
import argparse
import numpy as np
from keras import regularizers
from keras.callbacks import EarlyStopping, ReduceLROnPlateau
from keras.initializers import glorot_uniform
from keras.models import Sequential
from keras.layers import Dense, Activation
from sklearn.metrics import accuracy_score
import env
from boltzmann_machines.rbm import BernoulliRBM, logit_mean
from boltzmann_machines.utils import (RNG, Stopwatch,
one_hot, one_hot_decision_function, unhot)
from boltzmann_machines.utils.dataset import load_mnist
from boltzmann_machines.utils.optimizers import MultiAdam
def make_rbm(X_train, X_val, args):
if os.path.isdir(args.model_dirpath):
print "\nLoading model ...\n\n"
rbm = BernoulliRBM.load_model(args.model_dirpath)
else:
print "\nTraining model ...\n\n"
rbm = BernoulliRBM(n_visible=784,
n_hidden=args.n_hidden,
W_init=args.w_init,
vb_init=logit_mean(X_train) if args.vb_init else 0.,
hb_init=args.hb_init,
n_gibbs_steps=args.n_gibbs_steps,
learning_rate=args.lr,
momentum=np.geomspace(0.5, 0.9, 8),
max_epoch=args.epochs,
batch_size=args.batch_size,
l2=args.l2,
sample_v_states=args.sample_v_states,
sample_h_states=True,
dropout=args.dropout,
sparsity_target=args.sparsity_target,
sparsity_cost=args.sparsity_cost,
sparsity_damping=args.sparsity_damping,
metrics_config=dict(
msre=True,
pll=True,
feg=True,
train_metrics_every_iter=1000,
val_metrics_every_epoch=2,
feg_every_epoch=4,
n_batches_for_feg=50,
),
verbose=True,
display_filters=30,
display_hidden_activations=24,
v_shape=(28, 28),
random_seed=args.random_seed,
dtype=args.dtype,
tf_saver_params=dict(max_to_keep=1),
model_path=args.model_dirpath)
rbm.fit(X_train, X_val)
return rbm
def make_mlp((X_train, y_train), (X_val, y_val), (X_test, y_test),
(W, hb), args):
dense_params = {}
if W is not None and hb is not None:
dense_params['weights'] = (W, hb)
# define and initialize MLP model
mlp = Sequential([
Dense(args.n_hidden, input_shape=(784,),
kernel_regularizer=regularizers.l2(args.mlp_l2),
kernel_initializer=glorot_uniform(seed=1111),
**dense_params),
Activation('sigmoid'),
Dense(10, kernel_initializer=glorot_uniform(seed=2222)),
Activation('softmax'),
])
mlp.compile(optimizer=MultiAdam(lr=0.001,
lr_multipliers={'dense_1': args.mlp_lrm[0],
'dense_2': args.mlp_lrm[1]}),
loss='categorical_crossentropy',
metrics=['accuracy'])
# train and evaluate classifier
with Stopwatch(verbose=True) as s:
early_stopping = EarlyStopping(monitor=args.mlp_val_metric, patience=12, verbose=2)
reduce_lr = ReduceLROnPlateau(monitor=args.mlp_val_metric, factor=0.2, verbose=2,
patience=6, min_lr=1e-5)
callbacks = [early_stopping, reduce_lr]
try:
mlp.fit(X_train, one_hot(y_train, n_classes=10),
epochs=args.mlp_epochs,
batch_size=args.mlp_batch_size,
shuffle=False,
validation_data=(X_val, one_hot(y_val, n_classes=10)),
callbacks=callbacks)
except KeyboardInterrupt:
pass
y_pred = mlp.predict(X_test)
y_pred = unhot(one_hot_decision_function(y_pred), n_classes=10)
print "Test accuracy: {:.4f}".format(accuracy_score(y_test, y_pred))
# save predictions, targets, and fine-tuned weights
np.save(args.mlp_save_prefix + 'y_pred.npy', y_pred)
np.save(args.mlp_save_prefix + 'y_test.npy', y_test)
W_finetuned, _ = mlp.layers[0].get_weights()
np.save(args.mlp_save_prefix + 'W_finetuned.npy', W_finetuned)
def main():
# training settings
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# general/data
parser.add_argument('--gpu', type=str, default='0', metavar='ID',
help="ID of the GPU to train on (or '' to train on CPU)")
parser.add_argument('--n-train', type=int, default=55000, metavar='N',
help='number of training examples')
parser.add_argument('--n-val', type=int, default=5000, metavar='N',
help='number of validation examples')
parser.add_argument('--data-path', type=str, default='../data/', metavar='PATH',
help='directory for storing augmented data etc.')
# RBM related
parser.add_argument('--n-hidden', type=int, default=1024, metavar='N',
help='number of hidden units')
parser.add_argument('--w-init', type=float, default=0.01, metavar='STD',
help='initialize weights from zero-centered Gaussian with this standard deviation')
parser.add_argument('--vb-init', action='store_false',
help='initialize visible biases as logit of mean values of features' + \
', otherwise (if enabled) zero init')
parser.add_argument('--hb-init', type=float, default=0., metavar='HB',
help='initial hidden bias')
parser.add_argument('--n-gibbs-steps', type=int, default=1, metavar='N', nargs='+',
help='number of Gibbs updates per weights update or sequence of such (per epoch)')
parser.add_argument('--lr', type=float, default=0.05, metavar='LR', nargs='+',
help='learning rate or sequence of such (per epoch)')
parser.add_argument('--epochs', type=int, default=120, metavar='N',
help='number of epochs to train')
parser.add_argument('--batch-size', type=int, default=10, metavar='B',
help='input batch size for training')
parser.add_argument('--l2', type=float, default=1e-5, metavar='L2',
help='L2 weight decay coefficient')
parser.add_argument('--sample-v-states', action='store_true',
help='sample visible states, otherwise use probabilities w/o sampling')
parser.add_argument('--dropout', type=float, metavar='P',
help='probability of visible units being on')
parser.add_argument('--sparsity-target', type=float, default=0.1, metavar='T',
help='desired probability of hidden activation')
parser.add_argument('--sparsity-cost', type=float, default=1e-5, metavar='C',
help='controls the amount of sparsity penalty')
parser.add_argument('--sparsity-damping', type=float, default=0.9, metavar='D',
help='decay rate for hidden activations probs')
parser.add_argument('--random-seed', type=int, default=1337, metavar='N',
help="random seed for model training")
parser.add_argument('--dtype', type=str, default='float32', metavar='T',
help="datatype precision to use")
parser.add_argument('--model-dirpath', type=str, default='../models/rbm_mnist/', metavar='DIRPATH',
help='directory path to save the model')
# MLP related
parser.add_argument('--mlp-no-init', action='store_true',
help='if enabled, use random initialization')
parser.add_argument('--mlp-l2', type=float, default=1e-5, metavar='L2',
help='L2 weight decay coefficient')
parser.add_argument('--mlp-lrm', type=float, default=(0.1, 1.), metavar='LRM', nargs='+',
help='learning rate multipliers of 1e-3')
parser.add_argument('--mlp-epochs', type=int, default=100, metavar='N',
help='number of epochs to train')
parser.add_argument('--mlp-val-metric', type=str, default='val_acc', metavar='S',
help="metric on validation set to perform early stopping, {'val_acc', 'val_loss'}")
parser.add_argument('--mlp-batch-size', type=int, default=128, metavar='N',
help='input batch size for training')
parser.add_argument('--mlp-save-prefix', type=str, default='../data/rbm_', metavar='PREFIX',
help='prefix to save MLP predictions and targets')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if len(args.mlp_lrm) == 1:
args.mlp_lrm *= 2
# prepare data (load + scale + split)
print "\nPreparing data ...\n\n"
X, y = load_mnist(mode='train', path=args.data_path)
X /= 255.
RNG(seed=42).shuffle(X)
RNG(seed=42).shuffle(y)
n_train = min(len(X), args.n_train)
n_val = min(len(X), args.n_val)
X_train = X[:n_train]
y_train = y[:n_train]
X_val = X[-n_val:]
y_val = y[-n_val:]
# train and save the RBM model
rbm = make_rbm(X_train, X_val, args)
# load test data
X_test, y_test = load_mnist(mode='test', path=args.data_path)
X_test /= 255.
# discriminative fine-tuning: initialize MLP with
# learned weights, add FC layer and train using backprop
print "\nDiscriminative fine-tuning ...\n\n"
W, hb = None, None
if not args.mlp_no_init:
weights = rbm.get_tf_params(scope='weights')
W = weights['W']
hb = weights['hb']
make_mlp((X_train, y_train), (X_val, y_val), (X_test, y_test),
(W, hb), args)
if __name__ == '__main__':
main()