-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcross_domain_maml.py
153 lines (132 loc) · 4.33 KB
/
cross_domain_maml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from functools import partial
import lightning.pytorch as pl
import torch
import torch.nn as _nn
import torchopt
import torchvision.models as _models
from torch.utils.data import DataLoader
import torchcross as tx
from medimeta import (
get_available_tasks,
MultiPickledMedIMetaTaskDataset,
PickledMedIMetaTaskDataset,
)
from torchcross.models.lightning import CrossDomainMAML
from torchcross.utils.collate_fn import identity
def resnet18_backbone(pretrained=False):
weights = _models.ResNet18_Weights.DEFAULT if pretrained else None
resnet = _models.resnet18(weights=weights, num_classes=1000)
num_features = resnet.fc.in_features
resnet.fc = _nn.Identity()
return resnet, num_features
def main(args):
data_path = args.data_path
presampled_data_path = args.presampled_data_path
target_dataset_id = args.target_dataset
target_task_name = args.target_task
validation_dataset_name = args.validation_dataset
validation_task_name = args.validation_task
num_workers = args.num_workers
batch_size = 2
task_dict = get_available_tasks(data_path)
train_tasks = [
(ds, t)
for ds, tasks in task_dict.items()
for t in tasks
if ds != target_dataset_id
]
# Create the cross-domain meta-dataset from pre-sampled tasks
train_dataset = MultiPickledMedIMetaTaskDataset(
presampled_data_path,
data_path,
train_tasks,
n_support=(1, 10),
n_query=10,
length=1000,
collate_fn=tx.utils.collate_fn.stack,
)
val_dataset = PickledMedIMetaTaskDataset(
presampled_data_path,
data_path,
validation_dataset_name,
validation_task_name,
n_support=5,
n_query=10,
length=100,
collate_fn=tx.utils.collate_fn.stack,
)
train_dataloader = DataLoader(
train_dataset,
batch_size=batch_size,
num_workers=num_workers,
collate_fn=identity,
pin_memory=True,
)
val_dataloader = DataLoader(
val_dataset,
batch_size=batch_size,
num_workers=num_workers,
collate_fn=identity,
pin_memory=True,
)
# Create optimizer
outer_optimizer = partial(torch.optim.Adam, lr=0.001)
inner_optimizer = partial(torchopt.MetaSGD, lr=0.1)
eval_inner_optimizer = partial(torch.optim.SGD, lr=0.1)
num_inner_steps = 4
eval_num_inner_steps = 32
# Create the lighting model with pre-trained resnet18 backbone
model = CrossDomainMAML(
resnet18_backbone(pretrained=True),
outer_optimizer,
inner_optimizer,
eval_inner_optimizer,
num_inner_steps,
eval_num_inner_steps,
)
# Create the lightning trainer
trainer = pl.Trainer(
inference_mode=False,
max_epochs=1,
check_val_every_n_epoch=1,
val_check_interval=1000,
limit_val_batches=100,
)
# Pre-train the model on all the tasks in MedIMeta except the target task
trainer.fit(model, train_dataloader, val_dataloader)
# Save the model
# Uncomment the following line to save the pretrained model
# torch.save(model.state_dict(), "model.pt")
# Create the test dataloader
test_dataset = PickledMedIMetaTaskDataset(
presampled_data_path,
data_path,
target_dataset_id,
target_task_name,
n_support=5,
n_query=10,
length=100,
collate_fn=tx.utils.collate_fn.stack,
)
test_dataloader = DataLoader(
test_dataset,
batch_size=batch_size,
num_workers=num_workers,
collate_fn=identity,
pin_memory=True,
)
# Meta-test the model on the target task
trainer.test(model, test_dataloader)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--data_path", type=str, default="data/MedIMeta")
parser.add_argument(
"--presampled_data_path", type=str, default="data/MedIMeta_presampled"
)
parser.add_argument("--target_dataset", type=str, default="OCT")
parser.add_argument("--target_task", type=str, default="disease")
parser.add_argument("--validation_dataset", type=str, default="OCT")
parser.add_argument("--validation_task", type=str, default="disease")
parser.add_argument("--num_workers", type=int, default=8)
main(parser.parse_args())