-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBTree.hpp
745 lines (743 loc) · 22 KB
/
BTree.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
//
// Created by 郑文鑫 on 2019-03-09.
//
#include "utility.hpp"
#include <functional>
#include <cstddef>
#include <fstream>
#include "exception.hpp"
namespace sjtu {
template <class Key, class Value, class Compare = std::less<Key> >
class BTree {
//叶子节点数组大小
static const int sizeofleaf = (4096 - 4 * sizeof(long) - sizeof(int)) / sizeof(pair<Key, Value>);
//中间节点数组大小
static const int sizeofinterval = (4096 - 2 * sizeof(long) - sizeof(int) - sizeof(bool)) / (sizeof(Key) + sizeof(long));
private:
struct leaf_node
{
long offset;
long next;
long father;
long prev;
int nowsize;
pair<Key,Value> *data=new pair<Key,Value>[sizeofleaf];
leaf_node() {
offset = next = father = prev = 0x0;
nowsize = -1;
}
};//叶子节点
struct p2
{
Key k;
long offset;
p2() { offset = 0x0; }
};
struct interval_node
{
long offset;
long father;
bool judge;
int nowsize;
p2 *data=new p2[sizeofinterval];
interval_node()
{
offset = father = 0x0;
nowsize = -1;
judge = false;
}
};//内部节点
struct save
{
long root;
long first_leaf;
long now_for_change;
save() { root = first_leaf = now_for_change = 0x0; }
};//保存当前读取信息
// Your private members go here
public:
mutable std::fstream foi;
save save_data;
typedef pair<const Key, Value> value_type;
//打开文件
void open_file()
{
foi.open("MySQL", std::ios::in|std::ios::out|std::ios::binary);
if (!foi) throw "DS is too difficult.Fuck it!";
foi.seekp(0, foi.beg);
save_data.now_for_change = (long)(foi.tellp()) + sizeof(save);
foi.write(reinterpret_cast<char*>(&save_data), sizeof(save));
}
//关闭文件
void close_file()
{
foi.close();
}
class const_iterator;
class iterator {
private:
// Your private members go here
public:
leaf_node *ptr;
int position;
iterator() {
ptr = nullptr;
position = -1;
// TODO Default Constructor
}
iterator(const iterator& other) {
ptr = other.ptr;
position = other.position;
// TODO Copy Constructor
}
// Return a new iterator which points to the n-next elements
iterator operator++(int) {
iterator save = this;
if (position < ptr->nowsize) position++;
else {
if (ptr->next == 0x0) ptr = nullptr;
else ptr = foi.read(ptr->next, sizeof(leaf_node));
position = 0;
}
return save;
// Todo iterator++
}
iterator& operator++() {
if (position < ptr->nowsize) position++;
else {
if (ptr->next == 0x0) ptr = nullptr;
else ptr = foi.read(ptr->next, sizeof(leaf_node));
position = 0;
}
return *this;
// Todo ++iterator
}
iterator operator--(int) {
iterator save = this;
if (position != 0) position--;
else {
if (ptr->prev == 0x0){
ptr = nullptr;
position = -1;
}
else {
ptr = foi.read(ptr->prev, sizeof(leaf_node));
position = ptr->nowsize;
}
}
return save;
// Todo iterator--
}
iterator& operator--() {
if (position != 0) position--;
else {
if (ptr->prev == 0x0) {
ptr = nullptr;
position = -1;
}
else {
ptr = foi.read(ptr->prev, sizeof(leaf_node));
position = ptr->nowsize;
}
}
return *this;
// Todo --iterator
}
//
bool modify(const Value& value)
{
ptr->data[ptr->position].Value = value;
foi.seekp(ptr->offset, foi.beg);
foi.write(ptr, sizeof(leaf_node));
return true;
}
// Overloaded of operator '==' and '!='
// Check whether the iterators are same
bool operator==(const iterator& rhs) const {
// Todo operator ==
return (ptr->offset == rhs.ptr->offset) && (position == rhs.position);
}
bool operator==(const const_iterator& rhs) const {
// Todo operator ==
return (ptr->offset == rhs.ptr->offset) && (position == rhs.position);
}
bool operator!=(const iterator& rhs) const {
// Todo operator !=
return !(*this == rhs);
}
bool operator!=(const const_iterator& rhs) const {
// Todo operator !=
return !(*this == rhs);
}
};
class const_iterator {
// it should has similar member method as iterator.
// and it should be able to construct from an iterator.
private:
// Your private members go here
leaf_node *ptr;
int position;
public:
const_iterator() {
// TODO
ptr = nullptr;
position = -1;
}
const_iterator(const const_iterator& other) {
// TODO
ptr = other.ptr;
position = other.position;
}
const_iterator(const iterator& other) {
// TODO
ptr = other.ptr;
position = other.position;
}
bool operator==(const iterator& rhs) const {
// Todo operator ==
return (ptr->offset == rhs.ptr->offset) && (position == rhs.position);
}
bool operator==(const const_iterator& rhs) const {
// Todo operator ==
return (ptr->offset == rhs.ptr->offset) && (position == rhs.position);
}
bool operator!=(const iterator& rhs) const {
// Todo operator !=
return !(*this == rhs);
}
bool operator!=(const const_iterator& rhs) const {
// Todo operator !=
return !(*this == rhs);
}
// And other methods in iterator, please fill by yourself.
};
// Default Constructor and Copy Constructor
BTree() {
// Todo Default
open_file();
}
BTree(const BTree& other) {
// Todo Copy
foi = other.foi;
save_data = other.save_data;
}
BTree& operator=(const BTree& other) {
// Todo Assignment
foi = other.foi;
save_data = other.save_data;
return *this;
}
~BTree() {
// Todo Destructor
close_file();
save_data.root = save_data.first_leaf = save_data.now_for_change = 0x0;
}
/**
* Finds an element with key equivalent to key.
* key value of the element to search for.
* Iterator to an element with key equivalent to key.
* If no such element is found, past-the-end (see end()) iterator is
* returned.
*/
iterator find(const Key& key) {
iterator tmp;
if (save_data.root == save_data.first_leaf)
{
foi.seekg(save_data.root, foi.beg);
foi.read((char*)(&tmp.ptr), sizeof(leaf_node));
for (int i = 0; i <= tmp.ptr->nowsize; i++)
{
if (!(tmp.ptr->data[i].first > key || tmp.ptr->data[i].first < key))
{
tmp.position = i;
return tmp;
}
}
tmp = end();
return tmp;
}
else {
interval_node *t;
foi.seekg(save_data.root, foi.beg);
foi.read((char*)(&t), sizeof(interval_node));
while (!t->judge)
{
for (int i = 0; i <= t->nowsize; i++)
{
if (!(t->data[i].k < key))
{
foi.seekg(t->data[i].offset,foi.beg);
foi.read((char*)(&t), sizeof(interval_node));
continue;
}
}
tmp = end();
return tmp;
}
for (int i = 0; i <= t->nowsize; i++)
{
if (!(t->data[i].k < key))
{
foi.seekg(t->data[i].offset, foi.beg);
foi.read((char*)(&tmp.ptr), sizeof(leaf_node));
break;
}
}
for (int i = 0; i <= tmp.ptr->nowsize; i++)
{
if (!(tmp.ptr->data[i].first > key || tmp.ptr->data[i].first < key))
{
tmp.position = i;
return tmp;
}
}
tmp = end();
return tmp;
}
}
const_iterator find(const Key& key) const {
const_iterator *tmp;
if (save_data.root == save_data.first_leaf)
{
tmp->ptr = foi.read(save_data.root, sizeof(leaf_node));
for (int i = 0; i <= tmp->ptr->nowsize; i++)
{
if (!(tmp->ptr->data[i].Key > key || tmp->ptr->data[i].Key < key))
{
tmp->position = i;
return tmp;
}
}
tmp = end();
return tmp;
}
else {
interval_node *t = foi.read(save_data.root, sizeof(interval_node));
while (!t->judge)
{
for (int i = 0; i <= t->nowsize; i++)
{
if (!(t->data[i].k < key))
{
t = foi.read(t->data[i].offset, sizeof(interval_node));
continue;
}
}
tmp = end();
return tmp;
}
for (int i = 0; i <= t->nowsize; i++)
{
if (!(t->data[i].k < key))
{
tmp->ptr = foi.read(t->data[i].offset, sizeof(leaf_node));
break;
}
}
for (int i = 0; i <= tmp->ptr->nowsize; i++)
{
if (!(tmp->ptr->data[i].Key > key || tmp->ptr->data[i].Key < key))
{
tmp->position = i;
return tmp;
}
}
tmp = end();
return tmp;
}
}
//分裂叶节点
void split_leaf(leaf_node *&t)
{
leaf_node *tmp1=new leaf_node, *tmp2=new leaf_node;
for (int i = 0; i < t->nowsize / 2; i++)
{
tmp1->data[++tmp1->nowsize].first = t->data[i].first;
tmp1->data[tmp1->nowsize].second = t->data[i].second;
}
for (int i = t->nowsize / 2; i <= t->nowsize; i++)
{
tmp2->data[++tmp2->nowsize].first = t->data[i].first;
tmp2->data[tmp2->nowsize].second = t->data[i].second;
}
tmp1->offset = t->offset;
tmp2->offset = save_data.now_for_change;
save_data.now_for_change += sizeof(leaf_node);
foi.seekp(0, foi.beg);
foi.write(reinterpret_cast<char*>(&save_data), sizeof(save));
tmp1->next = tmp2->offset;
tmp2->prev = tmp1->offset;
if (t->father != 0x0)
{
tmp1->father = tmp2->father = t->father;
interval_node *tmp;
foi.seekg(t->father, foi.beg);
foi.read((char*)(&tmp), sizeof(interval_node));
int i;
for (i = 0; i <= tmp->nowsize; i++)
{
if (tmp->data[i].offset == t->offset) break;
}
tmp->data[i].k = tmp1->data[tmp1->nowsize].first;
tmp->nowsize++;
for (int j = tmp->nowsize; j > i + 1; j--)
{
tmp->data[j] = tmp->data[j - 1];
}
tmp->data[i + 1].k = tmp2->data[tmp2->nowsize].first;
tmp->data[i + 1].offset = tmp2->offset;
foi.seekp(tmp->offset, foi.beg);
foi.write(reinterpret_cast<char*>(&tmp), sizeof(interval_node));
split_interval(tmp);
foi.seekp(tmp1->offset, foi.beg);
foi.write(reinterpret_cast<char*>(&tmp1), sizeof(leaf_node));
foi.seekp(tmp2->offset, foi.beg);
foi.write(reinterpret_cast<char*>(&tmp2), sizeof(leaf_node));
}
else {
interval_node *tmp=new interval_node;
tmp->offset = save_data.now_for_change;
save_data.now_for_change += sizeof(interval_node);
foi.seekp(0, foi.beg);
foi.write(reinterpret_cast<char*>(&save_data), sizeof(save));
tmp->judge = true;
tmp1->father = tmp2->father = tmp->offset;
tmp->data[++tmp->nowsize].k = tmp1->data[tmp1->nowsize].first;
tmp->data[tmp->nowsize].offset = tmp1->offset;
tmp->data[++tmp->nowsize].k = tmp2->data[tmp2->nowsize].first;
tmp->data[tmp->nowsize].offset = tmp2->offset;
foi.seekp(tmp->offset, foi.beg);
foi.write(reinterpret_cast<char*>(&tmp), sizeof(interval_node));
foi.seekp(tmp1->offset, foi.beg);
foi.write(reinterpret_cast<char*>(&tmp1), sizeof(leaf_node));
foi.seekp(tmp2->offset, foi.beg);
foi.write(reinterpret_cast<char*>(&tmp2), sizeof(leaf_node));
save_data.root = tmp->offset;
foi.seekp(0, foi.beg);
foi.write(reinterpret_cast<char*>(&save_data), sizeof(save));
}
}
//分裂内部节点
void split_interval(interval_node *&t)
{
if (t->nowsize != sizeofinterval - 1) return;
else {
interval_node *tmp1=new interval_node, *tmp2=new interval_node;
for (int i = 0; i < t->nowsize / 2; i++)
{
tmp1->data[++tmp1->nowsize] = t->data[i];
}
for (int i = t->nowsize / 2; i <= t->nowsize; i++)
{
tmp2->data[++tmp2->nowsize] = t->data[i];
}
tmp1->offset = t->offset;
tmp2->offset = save_data.now_for_change;
save_data.now_for_change += sizeof(interval_node);
foi.seekp(0, foi.beg);
foi.write(reinterpret_cast<char*>(&save_data), sizeof(save));
tmp1->judge = tmp2->judge = t->judge;
if (t->father != 0x0)
{
tmp1->father = tmp2->father = t->father;
interval_node *tmp;
foi.seekg(tmp1->father, foi.beg);
foi.read((char*)(&tmp), sizeof(interval_node));
int i;
for (i = 0; i <= tmp->nowsize; i++)
{
if (tmp->data[i].offset == t->offset) break;
}
tmp->data[i].k = tmp1->data[tmp1->nowsize].k;
tmp->nowsize++;
for (int j = tmp->nowsize; j > i + 1; j--)
{
tmp->data[j] = tmp->data[j - 1];
}
tmp->data[i + 1].k = tmp2->data[tmp2->nowsize].k;
tmp->data[i + 1].offset = tmp2->offset;
foi.seekp(tmp->offset, foi.beg);
foi.write(reinterpret_cast<char*>(&tmp), sizeof(interval_node));
split_interval(tmp);
foi.seekp(tmp1->offset, foi.beg);
foi.write(reinterpret_cast<char*>(&tmp1), sizeof(interval_node));
foi.seekp(tmp2->offset, foi.beg);
foi.write(reinterpret_cast<char*>(&tmp2), sizeof(interval_node));
}
else {
interval_node *tmp=new interval_node;
tmp->offset = save_data.now_for_change;
tmp1->father = tmp2->father = tmp->offset;
tmp->judge = false;
tmp->data[++tmp->nowsize].k = tmp1->data[tmp1->nowsize].k;
tmp->data[tmp->nowsize].offset = tmp1->offset;
tmp->data[++tmp->nowsize].k = tmp2->data[tmp2->nowsize].k;
tmp->data[tmp->nowsize].offset = tmp2->offset;
save_data.root = tmp->offset;
save_data.now_for_change += sizeof(interval_node);
foi.seekp(0, foi.beg);
foi.write(reinterpret_cast<char*>(&save_data), sizeof(save));
foi.seekp(tmp->offset, foi.beg);
foi.write(reinterpret_cast<char*>(&tmp), sizeof(interval_node));
foi.seekp(tmp1->offset, foi.beg);
foi.write(reinterpret_cast<char*>(&tmp1), sizeof(interval_node));
foi.seekp(tmp2->offset, foi.beg);
foi.write(reinterpret_cast<char*>(&tmp2), sizeof(interval_node));
}
}
}
// Insert: Insert certain Key-Value into the database
// Return a pair, the first of the pair is the iterator point to the new
// element, the second of the pair is Success if it is successfully inserted
pair<iterator, OperationResult> insert(const Key& key, const Value& value) {
// TODO insert function
if (save_data.root == 0x0)
{
leaf_node *tmp=new leaf_node;
tmp->offset = save_data.now_for_change;
save_data.root = tmp->offset;
save_data.first_leaf = tmp->offset;
save_data.now_for_change += sizeof(leaf_node);
tmp->nowsize++;
tmp->data[tmp->nowsize].first = key;
tmp->data[tmp->nowsize].second = value;
foi.seekp(tmp->offset, foi.beg);
foi.write(reinterpret_cast<char*>(&tmp), sizeof(leaf_node));
foi.seekp(0, foi.beg);
foi.write(reinterpret_cast<char*>(&save_data), sizeof(save));
iterator res;
res.ptr = tmp;
res.position = 0;
return pair<iterator, OperationResult>(res,Success);
}
else {
iterator tmp;
if (save_data.first_leaf == save_data.root)
{
foi.seekg(save_data.root, foi.beg);
foi.read((char*)(&tmp.ptr), sizeof(leaf_node));
if (tmp.ptr->nowsize != sizeofleaf - 2)
{
tmp.ptr->data[++tmp.ptr->nowsize].first = key;
tmp.ptr->data[tmp.ptr->nowsize].second = value;
int i;
for (i = tmp.ptr->nowsize; i > 0; i--)
{
if (tmp.ptr->data[i - 1].first > key)
{
tmp.ptr->data[i].first = tmp.ptr->data[i - 1].first;
tmp.ptr->data[i].second = tmp.ptr->data[i - 1].second;
}
}
tmp.ptr->data[i].first = key;
tmp.ptr->data[i].second = value;
tmp.position = i;
foi.seekp(tmp.ptr->offset, foi.beg);
foi.write(reinterpret_cast<char*>(&tmp.ptr), sizeof(leaf_node));
return pair<iterator, OperationResult>(tmp,Success);
}
else {
tmp.ptr->data[++tmp.ptr->nowsize].first = key;
tmp.ptr->data[tmp.ptr->nowsize].second = value;
int i;
for (i = tmp.ptr->nowsize; i > 0; i--)
{
if (tmp.ptr->data[i - 1].first > key)
{
tmp.ptr->data[i].first = tmp.ptr->data[i - 1].first;
tmp.ptr->data[i].second = tmp.ptr->data[i - 1].second;
}
}
tmp.ptr->data[i].first = key;
tmp.ptr->data[i].second = value;
split_leaf(tmp.ptr);
return pair<iterator, OperationResult>(find(key),Success);
}
}
else {
foi.seekg(save_data.root, foi.beg);
interval_node *t;
foi.read((char*)(&t), sizeof(interval_node));
if (key > t->data[t->nowsize].k)
{
t->data[t->nowsize].k = key;
foi.seekp(t->offset, foi.beg);
foi.write(reinterpret_cast<char*>(&t), sizeof(interval_node));
while (!t->judge)
{
foi.seekg(t->data[t->nowsize].offset, foi.beg);
foi.read((char*)(&t), sizeof(interval_node));
t->data[t->nowsize].k = key;
foi.seekp(t->offset, foi.beg);
foi.write(reinterpret_cast<char*>(&t), sizeof(interval_node));
}
foi.seekg(t->data[t->nowsize].offset, foi.beg);
foi.read((char*)(&tmp.ptr), sizeof(leaf_node));
tmp.ptr->data[++tmp.ptr->nowsize].first = key;
tmp.ptr->data[tmp.ptr->nowsize].second = value;
if (tmp.ptr->nowsize == sizeofleaf - 1)
{
split_leaf(tmp.ptr);
return pair<iterator,OperationResult>(find(key),Success);
}
else {
foi.seekp(tmp.ptr->offset,foi.beg);
foi.write(reinterpret_cast<char*>(&tmp.ptr), sizeof(leaf_node));
tmp.position = tmp.ptr->nowsize;
return pair<iterator,OperationResult>(tmp,Success);
}
}
else {
while (!t->judge)
{
for (int i = 0; i <= t->nowsize; i++)
{
if (!(key > t->data[i].k))
{
foi.seekg(t->data[i].offset, foi.beg);
foi.read((char*)(&t), sizeof(interval_node));
break;
}
}
}
for (int i = 0; i <= t->nowsize; i++)
{
if (!(key > t->data[i].k))
{
foi.seekg(t->data[i].offset, foi.beg);
foi.read((char*)(&tmp.ptr), sizeof(leaf_node));
}
}
tmp.ptr->data[++tmp.ptr->nowsize].first = key;
tmp.ptr->data[tmp.ptr->nowsize].second = value;
int i;
for (i = tmp.ptr->nowsize; i > 0; i--)
{
if (tmp.ptr->data[i - 1].first > key)
{
tmp.ptr->data[i].first = tmp.ptr->data[i - 1].first;
tmp.ptr->data[i].second = tmp.ptr->data[i - 1].second;
}
}
tmp.ptr->data[i].first = key;
tmp.ptr->data[i].second = value;
if (tmp.ptr->nowsize == sizeofleaf - 1)
{
split_leaf(tmp.ptr);
return pair<iterator,OperationResult>(find(key),Success);
}
else {
tmp.position = i;
foi.seekp(tmp.ptr->offset, foi.beg);
foi.write(reinterpret_cast<char*>(&tmp.ptr), sizeof(leaf_node));
return pair<iterator,OperationResult>(tmp,Success);
}
}
}
}
}
// Erase: Erase the Key-Value
// Return Success if it is successfully erased
// Return Fail if the key doesn't exist in the database
OperationResult erase(const Key& key) {
// TODO erase function
return Fail; // If you can't finish erase part, just remaining here.
}
// Overloaded of []
// Access Specified Element
// return a reference to the first value that is mapped to a key equivalent to
// key. Perform an insertion if such key does not exist.
Value at(const Key& key)
{
iterator tmp = find(key);
if (tmp != end()) return tmp.ptr->data[tmp.position].second;
throw "DS is too difficult.Fuck it!";
}
iterator begin() {
iterator *tmp;
tmp->ptr = foi.read(save_data.first_leaf, sizeof(leaf_node));
tmp->position = 0;
return tmp;
}
const_iterator cbegin() const {
mutable const_iterator *tmp;
tmp->ptr = foi.read(save_data.first_leaf, sizeof(leaf_node));
tmp->position = 0;
return tmp;
}
// Return a iterator to the end(the next element after the last)
iterator end() {
iterator tmp;
foi.seekg(save_data.first_leaf, foi.beg);
foi.read((char*)(&tmp.ptr), sizeof(leaf_node));
while (tmp.ptr->next != 0x0)
{
foi.seekg(tmp.ptr->next, foi.beg);
foi.read((char*)(&tmp.ptr), sizeof(leaf_node));
}
tmp.position = tmp.ptr->nowsize + 1;
return tmp;
}
const_iterator cend() const {
mutable const_iterator *tmp;
tmp->ptr = foi.read(save_data.first_leaf, sizeof(leaf_node));
while (tmp->ptr->next != 0x0)
{
tmp->ptr = foi.read(tmp->ptr->next, sizeof(leaf_node));
}
tmp->position = tmp->ptr->nowsize + 1;
return tmp;
}
// Check whether this BTree is empty
bool empty() const {
return save_data.root == 0x0;
}
// Return the number of <K,V> pairs
size_t size() const {
int cnt = 0;
leaf_node *tmp;
if (save_data.first_leaf == 0) return 0;
foi.seekg(save_data.first_leaf, foi.beg);
foi.read((char*)(&tmp), sizeof(leaf_node));
cnt += tmp->nowsize + 1;
while (tmp->next != 0x0)
{
foi.seekg(tmp->next, foi.beg);
foi.read((char*)(&tmp), sizeof(leaf_node));
cnt += tmp->nowsize + 1;
}
return cnt;
}
// Clear the BTree
void clear() {
foi.clear();
foi.seekp(0, foi.beg);
save_data.root = save_data.first_left = 0x0;
save_data.now_for_change = (long)foi.tellp() +sizeof(save);
foi.seekp(0, foi.beg);
foi.write(reinterpret_cast<char*>(&save_data), sizeof(save));
}
/**
* Returns the number of elements with key
* that compares equivalent to the specified argument,
* The default method of check the equivalence is !(a < b || b > a)
*/
size_t count(const Key& key) const {
leaf_node *tmp = foi.read(save_data.first_leaf, sizeof(leaf_node));
size_t cnt = 0;
for (int i = 0; i <= tmp->nowsize; i++)
{
if (!(tmp->data[i].Key > key || tmp->data[i].Key < key)) cnt++;
}
while (tmp->next != 0x0)
{
tmp = foi.read(tmp->next, sizeof(leaf_node));
for (int i = 0; i <= tmp->nowsize; i++)
{
if (!(tmp->data[i].Key > key || tmp->data[i].Key < key)) cnt++;
}
}
return cnt;
}
};
} // namespace sjtu