-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
138 lines (126 loc) · 4.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
from core_train import core_train
from fc_classification import FCNet
from torch import optim
from dataset import Refuge2, Resize2_640, RandomRotation, RandomFlip
from torchvision.transforms import Compose
from tqdm import tqdm
from torch.autograd import Variable
import torch.nn as nn
from dedicated_Resnet50 import ResNet50_Mod
from utils import DataLoaderX, collate_fn
from sklearn.metrics import roc_auc_score
import numpy as np
def getModel(base_lr=1e-4, cuda=False):
model = FCNet()
if cuda:
model = model.cuda()
optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=base_lr,
momentum=0.9, weight_decay=0.0001)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, 30)
return model, optimizer, lr_scheduler
def getResNet(size, base_lr=1e-4, cuda=False):
model = ResNet50_Mod(input_size=size)
if cuda:
model = model.cuda()
optimizer = optim.SGD(model.parameters(), lr=base_lr, momentum=0.9, weight_decay=0.0001)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, 30)
return model, optimizer, lr_scheduler
def test(data, model, batch_size, cuda):
dataloader = DataLoaderX(data, batch_size=batch_size, shuffle=False, num_workers=1, collate_fn=collate_fn)
iterator = tqdm(dataloader)
classification = list()
gts = list()
for sample in iterator:
img, gt_label = sample
if cuda:
img = Variable(img).cuda
classification.append(model(img).cpu().detach().numpy())
gts.append(gt_label.numpy())
classification = np.stack(classification).flatten()
gts = np.stack(gts).flatten()
auc = roc_auc_score(classification, gts, average=None)
return auc
def train_fcnet(data, gt_labels, gt_segmentations, batch_size=1, cuda=False):
res = core_train(data, None, gt_segmentations, cuda=cuda)
model, optimizer, lr_scheduler = getModel(cuda=cuda)
transform = Compose(
[
RandomRotation(),
RandomFlip(),
Resize2_640()
]
)
dataset = Refuge2(data, gt_labels, None, transform=transform)
epoch = 0
best_auc = 0.
while True:
if epoch > 0 and epoch % 2 == 0:
model.eval()
auc = test(dataset, model, batch_size, cuda)
best_auc = max(best_auc, auc)
model.train()
if epoch >= 10:
break
dataloader = DataLoaderX(dataset, batch_size=batch_size, shuffle=True, num_workers=1, collate_fn=collate_fn)
iterator = tqdm(dataloader)
for sample in iterator:
optimizer.zero_grad()
img, gt_label = sample
if cuda:
img = Variable(img).cuda()
classification = model(img).cpu()
else:
classification = model(img)
# loss = nn.BCELoss()(classification.view(classification.shape[0], -1), gt_label.view(gt_label.shape[0], -1))
loss = nn.L1Loss()(classification.view(classification.shape[0], -1), gt_label.view(gt_label.shape[0], -1))
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 10.0)
optimizer.step()
lr_scheduler.step()
epoch += 1
return res, model
def train_resnet(data, gt_labels, batch_size=1, cuda=False):
print("**********************************Start training resnet*********************************")
model, optimizer, lr_scheduler = getResNet(size=data.shape[1], cuda=cuda)
transform = Compose(
[
RandomRotation(),
RandomFlip()
]
)
dataset = Refuge2(data, gt_labels, segmentations=None, transform=transform)
epoch = 0
best_auc = 0.
while True:
if epoch > 0 and epoch % 2 == 0:
model.eval()
auc = test(dataset, model, batch_size=batch_size, cuda=cuda)
best_auc = max(best_auc, auc)
model.train()
if epoch >= 10:
break
dataloader = DataLoaderX(dataset, batch_size=batch_size, shuffle=True, num_workers=1, collate_fn=collate_fn)
iterator = tqdm(dataloader)
for sample in iterator:
optimizer.zero_grad()
img, gt_label = sample
if cuda:
img = Variable(img).cuda()
classification = model(img).cpu()
else:
classification = model(img)
loss = nn.BCELoss()(classification.view(classification.shape[0], -1), gt_label.view(gt_label.shape[0], -1))
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 10.0)
optimizer.step()
lr_scheduler.step()
epoch += 1
return model
if __name__ == "__main__":
a = [0 for _ in range(10)]
a = torch.Tensor(a)
a = a.numpy()
b = [a, a]
b = np.stack(b).flatten()
print(b.shape)