-
Notifications
You must be signed in to change notification settings - Fork 204
/
Copy pathR-intro.Rout.save
912 lines (871 loc) · 20.2 KB
/
R-intro.Rout.save
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
R version 3.3.1 RC (2016-06-14 r70774) -- "Bug in Your Hair"
Copyright (C) 2016 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> #### "All the examples" from ./R-intro.texi
> #### -- in a way that this should be(come) an executable script.
>
> options(digits=5, width=65)##--- for outputs !
> options(stringsAsFactors=TRUE) ## factory-fresh defaults
> options(useFancyQuotes=FALSE) ## avoid problems on Windows
>
> ## 2. Simple Manipulations
>
> x <- c(10.4, 5.6, 3.1, 6.4, 21.7)
> assign("x", c(10.4, 5.6, 3.1, 6.4, 21.7))
> c(10.4, 5.6, 3.1, 6.4, 21.7) -> x
> .Last.value
[1] 10.4 5.6 3.1 6.4 21.7
> 1/x
[1] 0.096154 0.178571 0.322581 0.156250 0.046083
>
> y <- c(x, 0, x)
> v <- 2*x + y + 1
Warning message:
In 2 * x + y :
longer object length is not a multiple of shorter object length
> ##- Warning message:
> ##- longer object length
> ##- is not a multiple of shorter object length in: 2 * x + y
>
> sqrt(-17)
[1] NaN
Warning message:
In sqrt(-17) : NaNs produced
> ##- [1] NaN
> ##- Warning message:
> ##- NaNs produced in: sqrt(-17)
>
> sqrt(-17+0i)
[1] 0+4.1231i
>
> ###-- 2.3 .. regular sequences
>
> 1:30
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[21] 21 22 23 24 25 26 27 28 29 30
>
> n <- 10
>
> 1:n-1
[1] 0 1 2 3 4 5 6 7 8 9
> 1:(n-1)
[1] 1 2 3 4 5 6 7 8 9
> 30:1
[1] 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11
[21] 10 9 8 7 6 5 4 3 2 1
>
> seq(2,10)
[1] 2 3 4 5 6 7 8 9 10
> all(seq(1,30) == seq(to=30, from=1))
[1] TRUE
>
> seq(-5, 5, by=.2) -> s3
> s4 <- seq(length=51, from=-5, by=.2)
> all.equal(s3,s4)
[1] TRUE
>
> s5 <- rep(x, times=5)
> s6 <- rep(x, each=5)
>
> temp <- x > 13
>
> z <- c(1:3,NA); ind <- is.na(z)
>
> 0/0
[1] NaN
> Inf - Inf
[1] NaN
>
> labs <- paste(c("X","Y"), 1:10, sep="")
> labs
[1] "X1" "Y2" "X3" "Y4" "X5" "Y6" "X7" "Y8" "X9" "Y10"
>
> x <- c(z,z-2)#-- NOT in texi ; more interesting
> y <- x[!is.na(x)]
>
> (x+1)[(!is.na(x)) & x>0] -> z
> z
[1] 2 3 4 2
>
> x <- c(x, 9:12)# long enough:
> x[1:10]
[1] 1 2 3 NA -1 0 1 NA 9 10
>
> c("x","y")[rep(c(1,2,2,1), times=4)]
[1] "x" "y" "y" "x" "x" "y" "y" "x" "x" "y" "y" "x" "x" "y" "y"
[16] "x"
>
> y <- x[-(1:5)]
> y
[1] 0 1 NA 9 10 11 12
>
> fruit <- c(5, 10, 1, 20)
> names(fruit) <- c("orange", "banana", "apple", "peach")
> fruit
orange banana apple peach
5 10 1 20
>
> lunch <- fruit[c("apple","orange")]
> lunch
apple orange
1 5
>
> x
[1] 1 2 3 NA -1 0 1 NA 9 10 11 12
> x[is.na(x)] <- 0
> x
[1] 1 2 3 0 -1 0 1 0 9 10 11 12
>
> y <- -4:9
> y[y < 0] <- -y[y < 0]
> all(y == abs(y))
[1] TRUE
> y
[1] 4 3 2 1 0 1 2 3 4 5 6 7 8 9
>
> ###---------------
>
> z <- 0:9
> digits <- as.character(z)
> digits
[1] "0" "1" "2" "3" "4" "5" "6" "7" "8" "9"
> d <- as.integer(digits)
> all.equal(z, d)
[1] TRUE
>
> e <- numeric()
> e[3] <- 17
> e
[1] NA NA 17
>
> alpha <- 10*(1:10)
> alpha <- alpha[2 * 1:5]
> alpha
[1] 20 40 60 80 100
>
> winter <- data.frame(temp = c(-1,3,2,-2), cat = rep(c("A","B"), 2))
> winter
temp cat
1 -1 A
2 3 B
3 2 A
4 -2 B
> unclass(winter)
$temp
[1] -1 3 2 -2
$cat
[1] A B A B
Levels: A B
attr(,"row.names")
[1] 1 2 3 4
>
> ###------------ Ordered and unordered factors --------
> state <- c("tas", "sa", "qld", "nsw", "nsw", "nt", "wa", "wa",
+ "qld", "vic", "nsw", "vic", "qld", "qld", "sa", "tas",
+ "sa", "nt", "wa", "vic", "qld", "nsw", "nsw", "wa",
+ "sa", "act", "nsw", "vic", "vic", "act")
> statef <- factor(state)
> statef
[1] tas sa qld nsw nsw nt wa wa qld vic nsw vic qld qld sa
[16] tas sa nt wa vic qld nsw nsw wa sa act nsw vic vic act
Levels: act nsw nt qld sa tas vic wa
>
> levels(statef)
[1] "act" "nsw" "nt" "qld" "sa" "tas" "vic" "wa"
>
> incomes <- c(60, 49, 40, 61, 64, 60, 59, 54, 62, 69, 70, 42, 56,
+ 61, 61, 61, 58, 51, 48, 65, 49, 49, 41, 48, 52, 46,
+ 59, 46, 58, 43)
>
> incmeans <- tapply(incomes, statef, mean)
> incmeans
act nsw nt qld sa tas vic wa
44.500 57.333 55.500 53.600 55.000 60.500 56.000 52.250
>
> stderr <- function(x) sqrt(var(x)/length(x))
>
> incster <- tapply(incomes, statef, stderr)
> incster
act nsw nt qld sa tas vic wa
1.5000 4.3102 4.5000 4.1061 2.7386 0.5000 5.2440 2.6575
>
> ##
> z <- 1:1500
> dim(z) <- c(3,5,100)
>
>
> x <- array(1:20,dim=c(4,5)) # Generate a 4 by 5 array.
> x
[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20
>
> i <- array(c(1:3,3:1),dim=c(3,2))
> i # @code{i} is a 3 by 2 index array.
[,1] [,2]
[1,] 1 3
[2,] 2 2
[3,] 3 1
>
> x[i] # Extract those elements
[1] 9 6 3
>
> x[i] <- 0 # Replace those elements by zeros.
> x
[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 0 13 17
[2,] 2 0 10 14 18
[3,] 0 7 11 15 19
[4,] 4 8 12 16 20
>
> n <- 60
> b <- 5 ; blocks <- rep(1:b, length= n)
> v <- 6 ; varieties <- gl(v,10)
>
> Xb <- matrix(0, n, b)
> Xv <- matrix(0, n, v)
> ib <- cbind(1:n, blocks)
> iv <- cbind(1:n, varieties)
> Xb[ib] <- 1
> Xv[iv] <- 1
> X <- cbind(Xb, Xv)
>
> N <- crossprod(Xb, Xv)
> table(blocks,varieties)
varieties
blocks 1 2 3 4 5 6
1 2 2 2 2 2 2
2 2 2 2 2 2 2
3 2 2 2 2 2 2
4 2 2 2 2 2 2
5 2 2 2 2 2 2
> all(N == table(blocks,varieties))
[1] TRUE
>
> h <- 1:17
> Z <- array(h, dim=c(3,4,2))
> ## If the size of 'h' is exactly 24
> h <- rep(h, length = 24)
> Z. <- Z ## the result is the same as
> Z <- h; dim(Z) <- c(3,4,2)
> stopifnot(identical(Z., Z))
>
> Z <- array(0, c(3,4,2))
>
> ## So if @code{A}, @code{B} and @code{C} are all similar arrays
> ## <init>
> A <- matrix(1:6, 3,2)
> B <- cbind(1, 1:3)
> C <- rbind(1, rbind(2, 3:4))
> stopifnot(dim(A) == dim(B),
+ dim(B) == dim(C))
> ## <init/>
> D <- 2*A*B + C + 1
>
> a <- 1:9
> b <- 10*(1:3)
>
> ab <- a %o% b
> stopifnot(ab == outer(a,b,"*"),
+ ab == outer(a,b))
>
> x <- 1:10
> y <- -2:2
> f <- function(x, y) cos(y)/(1 + x^2)
> z <- outer(x, y, f)
>
>
> d <- outer(0:9, 0:9)
> fr <- table(outer(d, d, "-"))
> plot(as.numeric(names(fr)), fr, type="h",
+ xlab="Determinant", ylab="Frequency")
>
> ##
>
> B <- aperm(A, c(2,1))
> stopifnot(identical(B, t(A)))
>
> ## for example, @code{A} and @code{B} are square matrices of the same size
> ## <init>
> A <- matrix(1:4, 2,2)
> B <- A - 1
> ## <init/>
>
> A * B
[,1] [,2]
[1,] 0 6
[2,] 2 12
>
> A %*% B
[,1] [,2]
[1,] 3 11
[2,] 4 16
>
>
> ## <init>
> x <- c(-1, 2)
> ## <init/>
> x %*% A %*% x
[,1]
[1,] 7
>
> x %*% x
[,1]
[1,] 5
> stopifnot(x %*% x == sum(x^2))
>
> xxT <- cbind(x) %*% x
> xxT
[,1] [,2]
[1,] 1 -2
[2,] -2 4
> stopifnot(identical(xxT, x %*% rbind(x)))
>
> ## crossprod ... (ADD)
>
> ## diag ... (ADD)
>
> ## linear equations ... (ADD)
>
> ## solve ... (ADD)
>
> ## eigen:
> ## a symmetric matrix @code{Sm}
> ## <init>
> Sm <- matrix(-2:6, 3); Sm <- (Sm + t(Sm))/4; Sm
[,1] [,2] [,3]
[1,] -1 0 1
[2,] 0 1 2
[3,] 1 2 3
> ## </init>
> ev <- eigen(Sm)
>
> evals <- eigen(Sm)$values
>
> ## SVD .....
>
> ## "if M is in fact square, then, ..."
> ## <init>
> M <- cbind(1,1:3,c(5,2,3))
> X <- cbind(1:9, .25*(-4:4)^2)
> X1 <- cbind(1:7, -1)
> X2 <- cbind(0,2:8)
> y <- c(1:4, 2:6)
> ## </init>
>
> absdetM <- prod(svd(M)$d)
> stopifnot(all.equal(absdetM, abs(det(M))))# since det() nowadays exists
>
> ans <- lsfit(X, y)
>
> Xplus <- qr(X)
> b <- qr.coef(Xplus, y)
> fit <- qr.fitted(Xplus, y)
> res <- qr.resid(Xplus, y)
> ##
>
> X <- cbind(1, X1, X2)
>
> vec <- as.vector(X)
> vec <- c(X)
>
> statefr <- table(statef)
> statefr
statef
act nsw nt qld sa tas vic wa
2 6 2 5 4 2 5 4
> statefr <- tapply(statef, statef, length)
> statefr
act nsw nt qld sa tas vic wa
2 6 2 5 4 2 5 4
>
> factor(cut(incomes, breaks = 35+10*(0:7))) -> incomef
> table(incomef,statef)
statef
incomef act nsw nt qld sa tas vic wa
(35,45] 1 1 0 1 0 0 1 0
(45,55] 1 1 1 1 2 0 1 3
(55,65] 0 3 1 3 2 2 2 1
(65,75] 0 1 0 0 0 0 1 0
>
> ###--- @chapter 6. Lists and data frames
>
> Lst <- list(name="Fred", wife="Mary", no.children=3,
+ child.ages=c(4,7,9))
> Lst$name
[1] "Fred"
> Lst$wife
[1] "Mary"
> Lst$child.ages[1]
[1] 4
> stopifnot(Lst$name == Lst[[1]], Lst[[1]] == "Fred",
+ Lst$child.ages[1] == Lst[[4]][1], Lst[[4]][1] == 4
+ )
>
> x <- "name" ; Lst[[x]]
[1] "Fred"
>
> ## @section 6.2 Constructing and modifying lists
>
> ##<init>
> Mat <- cbind(1, 2:4)
> ##</init>
> Lst[5] <- list(matrix=Mat)
>
> ## @section 6.3 Data frames
>
> accountants <- data.frame(home=statef, loot=incomes, shot=incomef)
> ## MM: add the next lines to R-intro.texi !
> accountants
home loot shot
1 tas 60 (55,65]
2 sa 49 (45,55]
3 qld 40 (35,45]
4 nsw 61 (55,65]
5 nsw 64 (55,65]
6 nt 60 (55,65]
7 wa 59 (55,65]
8 wa 54 (45,55]
9 qld 62 (55,65]
10 vic 69 (65,75]
11 nsw 70 (65,75]
12 vic 42 (35,45]
13 qld 56 (55,65]
14 qld 61 (55,65]
15 sa 61 (55,65]
16 tas 61 (55,65]
17 sa 58 (55,65]
18 nt 51 (45,55]
19 wa 48 (45,55]
20 vic 65 (55,65]
21 qld 49 (45,55]
22 nsw 49 (45,55]
23 nsw 41 (35,45]
24 wa 48 (45,55]
25 sa 52 (45,55]
26 act 46 (45,55]
27 nsw 59 (55,65]
28 vic 46 (45,55]
29 vic 58 (55,65]
30 act 43 (35,45]
> str(accountants)
'data.frame': 30 obs. of 3 variables:
$ home: Factor w/ 8 levels "act","nsw","nt",..: 6 5 4 2 2 3 8 8 4 7 ...
$ loot: num 60 49 40 61 64 60 59 54 62 69 ...
$ shot: Factor w/ 4 levels "(35,45]","(45,55]",..: 3 2 1 3 3 3 3 2 3 4 ...
>
> ## ..........
>
> ###--- @chapter 8. Probability distributions
>
> ## 2-tailed p-value for t distribution
> 2*pt(-2.43, df = 13)
[1] 0.030331
> ## upper 1% point for an F(2, 7) distribution
> qf(0.01, 2, 7, lower.tail = FALSE)
[1] 9.5466
>
> attach(faithful)
> summary(eruptions)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.60 2.16 4.00 3.49 4.45 5.10
>
> fivenum(eruptions)
[1] 1.6000 2.1585 4.0000 4.4585 5.1000
>
> stem(eruptions)
The decimal point is 1 digit(s) to the left of the |
16 | 070355555588
18 | 000022233333335577777777888822335777888
20 | 00002223378800035778
22 | 0002335578023578
24 | 00228
26 | 23
28 | 080
30 | 7
32 | 2337
34 | 250077
36 | 0000823577
38 | 2333335582225577
40 | 0000003357788888002233555577778
42 | 03335555778800233333555577778
44 | 02222335557780000000023333357778888
46 | 0000233357700000023578
48 | 00000022335800333
50 | 0370
>
> hist(eruptions)
>
> ## <IMG> postscript("images/hist.eps", ...)
> # make the bins smaller, make a plot of density
> hist(eruptions, seq(1.6, 5.2, 0.2), prob=TRUE)
> lines(density(eruptions, bw=0.1))
> rug(eruptions) # show the actual data points
> ## dev.off() <IMG/>
>
> plot(ecdf(eruptions), do.points=FALSE, verticals=TRUE)
>
> ## <IMG> postscript("images/ecdf.eps", ...)
> long <- eruptions[eruptions > 3]
> plot(ecdf(long), do.points=FALSE, verticals=TRUE)
> x <- seq(3, 5.4, 0.01)
> lines(x, pnorm(x, mean=mean(long), sd=sqrt(var(long))), lty=3)
> ## dev.off() <IMG/>
>
> par(pty="s") # arrange for a square figure region
> qqnorm(long); qqline(long)
>
> x <- rt(250, df = 5)
> qqnorm(x); qqline(x)
>
> qqplot(qt(ppoints(250), df = 5), x, xlab = "Q-Q plot for t dsn")
> qqline(x)
>
> shapiro.test(long)
Shapiro-Wilk normality test
data: long
W = 0.979, p-value = 0.011
>
> ks.test(long, "pnorm", mean = mean(long), sd = sqrt(var(long)))
One-sample Kolmogorov-Smirnov test
data: long
D = 0.0661, p-value = 0.43
alternative hypothesis: two-sided
Warning message:
In ks.test(long, "pnorm", mean = mean(long), sd = sqrt(var(long))) :
ties should not be present for the Kolmogorov-Smirnov test
>
> ##@section One- and two-sample tests
>
> ## scan() from stdin :
> ## can be cut & pasted, but not parsed and hence not source()d
> ##scn A <- scan()
> ##scn 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97
> ##scn 80.05 80.03 80.02 80.00 80.02
> A <- c(79.98, 80.04, 80.02, 80.04, 80.03, 80.03, 80.04, 79.97,
+ 80.05, 80.03, 80.02, 80, 80.02)
> ##scn B <- scan()
> ##scn 80.02 79.94 79.98 79.97 79.97 80.03 79.95 79.97
> B <- c(80.02, 79.94, 79.98, 79.97, 79.97, 80.03, 79.95, 79.97)
>
> ## <IMG> postscript("images/ice.eps", ...)
> boxplot(A, B)
> ## dev.off() <IMG/>
>
> t.test(A, B)
Welch Two Sample t-test
data: A and B
t = 3.25, df = 12, p-value = 0.0069
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.013855 0.070183
sample estimates:
mean of x mean of y
80.021 79.979
>
> var.test(A, B)
F test to compare two variances
data: A and B
F = 0.584, num df = 12, denom df = 7, p-value = 0.39
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.12511 2.10527
sample estimates:
ratio of variances
0.58374
>
> t.test(A, B, var.equal=TRUE)
Two Sample t-test
data: A and B
t = 3.47, df = 19, p-value = 0.0026
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.016691 0.067348
sample estimates:
mean of x mean of y
80.021 79.979
>
> wilcox.test(A, B)
Wilcoxon rank sum test with continuity correction
data: A and B
W = 89, p-value = 0.0075
alternative hypothesis: true location shift is not equal to 0
Warning message:
In wilcox.test.default(A, B) : cannot compute exact p-value with ties
>
> plot(ecdf(A), do.points=FALSE, verticals=TRUE, xlim=range(A, B))
> plot(ecdf(B), do.points=FALSE, verticals=TRUE, add=TRUE)
>
> ###--- @chapter Grouping, loops and conditional execution
>
>
> ###--- @chapter Writing your own functions
>
>
> ###--- @chapter Statistical models in R
>
>
> ###--- @chapter Graphical procedures
>
> ###--- @appendix A sample session
>
> ## "Simulate starting a new R session, by
> rm(list=ls(all=TRUE))
> set.seed(123) # for repeatability
>
> if(interactive())
+ help.start()
>
> x <- rnorm(50)
> y <- rnorm(x)
> plot(x, y)
> ls()
[1] "x" "y"
> rm(x, y)
> x <- 1:20
> w <- 1 + sqrt(x)/2
> dummy <- data.frame(x = x, y = x + rnorm(x)*w)
> dummy
x y
1 1 -0.06561
2 2 2.43853
3 3 2.53967
4 4 3.30491
5 5 2.98444
6 6 5.89982
7 7 5.17676
8 8 3.97323
9 9 8.04943
10 10 12.37206
11 11 9.47055
12 12 13.66099
13 13 8.46544
14 14 13.84049
15 15 16.52523
16 16 16.90346
17 17 17.32353
18 18 16.00015
19 19 16.29841
20 20 16.68585
> fm <- lm(y ~ x, data=dummy)
> summary(fm)
Call:
lm(formula = y ~ x, data = dummy)
Residuals:
Min 1Q Median 3Q Max
-3.540 -1.103 -0.054 1.152 3.262
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5431 0.8902 -0.61 0.55
x 0.9653 0.0743 12.99 1.4e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.92 on 18 degrees of freedom
Multiple R-squared: 0.904, Adjusted R-squared: 0.898
F-statistic: 169 on 1 and 18 DF, p-value: 1.39e-10
> fm1 <- lm(y ~ x, data=dummy, weight=1/w^2)
> summary(fm1)
Call:
lm(formula = y ~ x, data = dummy, weights = 1/w^2)
Weighted Residuals:
Min 1Q Median 3Q Max
-1.3205 -0.4492 -0.0088 0.5088 1.2656
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.6155 0.6513 -0.94 0.36
x 0.9721 0.0664 14.64 1.9e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.72 on 18 degrees of freedom
Multiple R-squared: 0.922, Adjusted R-squared: 0.918
F-statistic: 214 on 1 and 18 DF, p-value: 1.94e-11
> attach(dummy)
The following object is masked _by_ .GlobalEnv:
x
> lrf <- lowess(x, y)
> plot(x, y)
> lines(x, lrf$y)
> abline(0, 1, lty=3)
> abline(coef(fm))
> abline(coef(fm1), col = "red")
> detach()# dummy
>
> plot(fitted(fm), resid(fm),
+ xlab="Fitted values",
+ ylab="Residuals",
+ main="Residuals vs Fitted")
> qqnorm(resid(fm), main="Residuals Rankit Plot")
> rm(fm, fm1, lrf, x, dummy)
>
>
> filepath <- system.file("data", "morley.tab" , package="datasets")
> if(interactive()) file.show(filepath)
> mm <- read.table(filepath)
> mm
Expt Run Speed
001 1 1 850
002 1 2 740
003 1 3 900
004 1 4 1070
005 1 5 930
006 1 6 850
007 1 7 950
008 1 8 980
009 1 9 980
010 1 10 880
011 1 11 1000
012 1 12 980
013 1 13 930
014 1 14 650
015 1 15 760
016 1 16 810
017 1 17 1000
018 1 18 1000
019 1 19 960
020 1 20 960
021 2 1 960
022 2 2 940
023 2 3 960
024 2 4 940
025 2 5 880
026 2 6 800
027 2 7 850
028 2 8 880
029 2 9 900
030 2 10 840
031 2 11 830
032 2 12 790
033 2 13 810
034 2 14 880
035 2 15 880
036 2 16 830
037 2 17 800
038 2 18 790
039 2 19 760
040 2 20 800
041 3 1 880
042 3 2 880
043 3 3 880
044 3 4 860
045 3 5 720
046 3 6 720
047 3 7 620
048 3 8 860
049 3 9 970
050 3 10 950
051 3 11 880
052 3 12 910
053 3 13 850
054 3 14 870
055 3 15 840
056 3 16 840
057 3 17 850
058 3 18 840
059 3 19 840
060 3 20 840
061 4 1 890
062 4 2 810
063 4 3 810
064 4 4 820
065 4 5 800
066 4 6 770
067 4 7 760
068 4 8 740
069 4 9 750
070 4 10 760
071 4 11 910
072 4 12 920
073 4 13 890
074 4 14 860
075 4 15 880
076 4 16 720
077 4 17 840
078 4 18 850
079 4 19 850
080 4 20 780
081 5 1 890
082 5 2 840
083 5 3 780
084 5 4 810
085 5 5 760
086 5 6 810
087 5 7 790
088 5 8 810
089 5 9 820
090 5 10 850
091 5 11 870
092 5 12 870
093 5 13 810
094 5 14 740
095 5 15 810
096 5 16 940
097 5 17 950
098 5 18 800
099 5 19 810
100 5 20 870
> mm$Expt <- factor(mm$Expt)
> mm$Run <- factor(mm$Run)
> attach(mm)
> plot(Expt, Speed, main="Speed of Light Data", xlab="Experiment No.")
> fm <- aov(Speed ~ Run + Expt, data=mm)
> summary(fm)
Df Sum Sq Mean Sq F value Pr(>F)
Run 19 113344 5965 1.11 0.3632
Expt 4 94514 23629 4.38 0.0031 **
Residuals 76 410166 5397
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> fm0 <- update(fm, . ~ . - Run)
> anova(fm0, fm)
Analysis of Variance Table
Model 1: Speed ~ Expt
Model 2: Speed ~ Run + Expt
Res.Df RSS Df Sum of Sq F Pr(>F)
1 95 523510
2 76 410166 19 113344 1.11 0.36
> detach()
> rm(fm, fm0)
>
> x <- seq(-pi, pi, len=50)
> y <- x
> f <- outer(x, y, function(x, y) cos(y)/(1 + x^2))
> oldpar <- par(no.readonly = TRUE)
> par(pty="s")
> contour(x, y, f)
> contour(x, y, f, nlevels=15, add=TRUE)
> fa <- (f-t(f))/2
> contour(x, y, fa, nlevels=15)
> par(oldpar)
> image(x, y, f)
> image(x, y, fa)
> objects(); rm(x, y, f, fa)
[1] "f" "fa" "filepath" "mm" "oldpar"
[6] "w" "x" "y"
> th <- seq(-pi, pi, len=100)
> z <- exp(1i*th)
> par(pty="s")
> plot(z, type="l")
> w <- rnorm(100) + rnorm(100)*1i
> w <- ifelse(Mod(w) > 1, 1/w, w)
> plot(w, xlim=c(-1,1), ylim=c(-1,1), pch="+",xlab="x", ylab="y")
> lines(z)
>
> w <- sqrt(runif(100))*exp(2*pi*runif(100)*1i)
> plot(w, xlim=c(-1,1), ylim=c(-1,1), pch="+", xlab="x", ylab="y")
> lines(z)
>
> rm(th, w, z)
> ## q()
>
>