-
Notifications
You must be signed in to change notification settings - Fork 204
/
Copy pathcomplex.Rout.save
294 lines (259 loc) · 13.8 KB
/
complex.Rout.save
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
R version 3.3.1 RC (2016-06-14 r70774) -- "Bug in Your Hair"
Copyright (C) 2016 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ### Tests of complex arithemetic.
>
> Meps <- .Machine$double.eps
> ## complex
> z <- 0i ^ (-3:3)
> stopifnot(Re(z) == 0 ^ (-3:3))
>
>
> ## powers, including complex ones
> a <- -4:12
> m <- outer(a +0i, b <- seq(-.5,2, by=.5), "^")
> dimnames(m) <- list(paste(a), "^" = sapply(b,format))
> round(m,3)
^
-0.5 0 0.5 1 1.5 2
-4 0.000-0.500i 1+0i 0.000+2.000i -4+0i 0.000-8.000i 16+0i
-3 0.000-0.577i 1+0i 0.000+1.732i -3+0i 0.000-5.196i 9+0i
-2 0.000-0.707i 1+0i 0.000+1.414i -2+0i 0.000-2.828i 4+0i
-1 0.000-1.000i 1+0i 0.000+1.000i -1+0i 0.000-1.000i 1+0i
0 Inf+0.000i 1+0i 0.000+0.000i 0+0i 0.000+0.000i 0+0i
1 1.000+0.000i 1+0i 1.000+0.000i 1+0i 1.000+0.000i 1+0i
2 0.707+0.000i 1+0i 1.414+0.000i 2+0i 2.828+0.000i 4+0i
3 0.577+0.000i 1+0i 1.732+0.000i 3+0i 5.196+0.000i 9+0i
4 0.500+0.000i 1+0i 2.000+0.000i 4+0i 8.000+0.000i 16+0i
5 0.447+0.000i 1+0i 2.236+0.000i 5+0i 11.180+0.000i 25+0i
6 0.408+0.000i 1+0i 2.449+0.000i 6+0i 14.697+0.000i 36+0i
7 0.378+0.000i 1+0i 2.646+0.000i 7+0i 18.520+0.000i 49+0i
8 0.354+0.000i 1+0i 2.828+0.000i 8+0i 22.627+0.000i 64+0i
9 0.333+0.000i 1+0i 3.000+0.000i 9+0i 27.000+0.000i 81+0i
10 0.316+0.000i 1+0i 3.162+0.000i 10+0i 31.623+0.000i 100+0i
11 0.302+0.000i 1+0i 3.317+0.000i 11+0i 36.483+0.000i 121+0i
12 0.289+0.000i 1+0i 3.464+0.000i 12+0i 41.569+0.000i 144+0i
> stopifnot(m[,as.character(0:2)] == cbind(1,a,a*a),
+ # latter were only approximate
+ all.equal(unname(m[,"0.5"]),
+ sqrt(abs(a))*ifelse(a < 0, 1i, 1),
+ tolerance = 20*Meps))
>
> ## 2.10.0-2.12.1 got z^n wrong in the !HAVE_C99_COMPLEX case
> z <- 0.2853725+0.3927816i
> z2 <- z^(1:20)
> z3 <- z^-(1:20)
> z0 <- cumprod(rep(z, 20))
> stopifnot(all.equal(z2, z0), all.equal(z3, 1/z0))
> ## was z^3 had value z^2 ....
>
> ## fft():
> for(n in 1:30) cat("\nn=",n,":", round(fft(1:n), 8),"\n")
n= 1 : 1+0i
n= 2 : 3+0i -1+0i
n= 3 : 6+0i -1.5+0.866025i -1.5-0.866025i
n= 4 : 10+0i -2+2i -2+0i -2-2i
n= 5 : 15+0i -2.5+3.440955i -2.5+0.812299i -2.5-0.812299i -2.5-3.440955i
n= 6 : 21+0i -3+5.196152i -3+1.732051i -3+0i -3-1.732051i -3-5.196152i
n= 7 : 28+0i -3.5+7.267825i -3.5+2.791157i -3.5+0.798852i -3.5-0.798852i -3.5-2.791157i -3.5-7.267825i
n= 8 : 36+0i -4+9.656854i -4+4i -4+1.656854i -4+0i -4-1.656854i -4-4i -4-9.656854i
n= 9 : 45+0i -4.5+12.36365i -4.5+5.362891i -4.5+2.598076i -4.5+0.793471i -4.5-0.793471i -4.5-2.598076i -4.5-5.362891i -4.5-12.36365i
n= 10 : 55+0i -5+15.38842i -5+6.88191i -5+3.632713i -5+1.624598i -5+0i -5-1.624598i -5-3.632713i -5-6.88191i -5-15.38842i
n= 11 : 66+0i -5.5+18.73128i -5.5+8.558167i -5.5+4.765777i -5.5+2.511766i -5.5+0.790781i -5.5-0.790781i -5.5-2.511766i -5.5-4.765777i -5.5-8.558167i -5.5-18.73128i
n= 12 : 78+0i -6+22.3923i -6+10.3923i -6+6i -6+3.464102i -6+1.607695i -6+0i -6-1.607695i -6-3.464102i -6-6i -6-10.3923i -6-22.3923i
n= 13 : 91+0i -6.5+26.37154i -6.5+12.38472i -6.5+7.336983i -6.5+4.486626i -6.5+2.465125i -6.5+0.789243i -6.5-0.789243i -6.5-2.465125i -6.5-4.486626i -6.5-7.336983i -6.5-12.38472i -6.5-26.37154i
n= 14 : 105+0i -7+30.669i -7+14.53565i -7+8.777722i -7+5.582314i -7+3.371022i -7+1.597704i -7+0i -7-1.597704i -7-3.371022i -7-5.582314i -7-8.777722i -7-14.53565i -7-30.669i
n= 15 : 120+0i -7.5+35.28473i -7.5+16.84528i -7.5+10.32286i -7.5+6.75303i -7.5+4.330127i -7.5+2.436898i -7.5+0.788282i -7.5-0.788282i -7.5-2.436898i -7.5-4.330127i -7.5-6.75303i -7.5-10.32286i -7.5-16.84528i -7.5-35.28473i
n= 16 : 136+0i -8+40.21872i -8+19.31371i -8+11.97285i -8+8i -8+5.345429i -8+3.313709i -8+1.591299i -8+0i -8-1.591299i -8-3.313709i -8-5.345429i -8-8i -8-11.97285i -8-19.31371i -8-40.21872i
n= 17 : 153+0i -8.5+45.47098i -8.5+21.94103i -8.5+13.72797i -8.5+9.324056i -8.5+6.418902i -8.5+4.232497i -8.5+2.418459i -8.5+0.787641i -8.5-0.787641i -8.5-2.418459i -8.5-4.232497i -8.5-6.418902i -8.5-9.324056i -8.5-13.72797i -8.5-21.94103i -8.5-45.47098i
n= 18 : 171+0i -9+51.04154i -9+24.7273i -9+15.58846i -9+10.72578i -9+7.551897i -9+5.196152i -9+3.275732i -9+1.586943i -9+0i -9-1.586943i -9-3.275732i -9-5.196152i -9-7.551897i -9-10.72578i -9-15.58846i -9-24.7273i -9-51.04154i
n= 19 : 190+0i -9.5+56.93038i -9.5+27.67255i -9.5+17.55446i -9.5+12.2056i -9.5+8.745366i -9.5+6.20666i -9.5+4.167086i -9.5+2.405727i -9.5+0.787192i -9.5-0.787192i -9.5-2.405727i -9.5-4.167086i -9.5-6.20666i -9.5-8.745366i -9.5-12.2056i -9.5-17.55446i -9.5-27.67255i -9.5-56.93038i
n= 20 : 210+0i -10+63.13752i -10+30.77684i -10+19.62611i -10+13.76382i -10+10i -10+7.26543i -10+5.09525i -10+3.2492i -10+1.58384i -10+0i -10-1.58384i -10-3.2492i -10-5.09525i -10-7.26543i -10-10i -10-13.76382i -10-19.62611i -10-30.77684i -10-63.13752i
n= 21 : 231+0i -10.5+69.66295i -10.5+34.04016i -10.5+21.80347i -10.5+15.40067i -10.5+11.31631i -10.5+8.37347i -10.5+6.06218i -10.5+4.12095i -10.5+2.39656i -10.5+0.78687i -10.5-0.78687i -10.5-2.39656i -10.5-4.12095i -10.5-6.06218i -10.5-8.37347i -10.5-11.31631i -10.5-15.40067i -10.5-21.80347i -10.5-34.04016i -10.5-69.66295i
n= 22 : 253+0i -11+76.50668i -11+37.46256i -11+24.08664i -11+17.11633i -11+12.69468i -11+9.53155i -11+7.06927i -11+5.02353i -11+3.22989i -11+1.58156i -11+0i -11-1.58156i -11-3.22989i -11-5.02353i -11-7.06927i -11-9.53155i -11-12.69468i -11-17.11633i -11-24.08664i -11-37.46256i -11-76.50668i
n= 23 : 276+0i -11.5+83.66871i -11.5+41.04404i -11.5+26.47566i -11.5+18.91094i -11.5+14.1354i -11.5+10.74025i -11.5+8.11759i -11.5+5.95882i -11.5+4.0871i -11.5+2.38973i -11.5+0.78662i -11.5-0.78662i -11.5-2.38973i -11.5-4.0871i -11.5-5.95882i -11.5-8.11759i -11.5-10.74025i -11.5-14.1354i -11.5-18.91094i -11.5-26.47566i -11.5-41.04404i -11.5-83.66871i
n= 24 : 300+0i -12+91.14905i -12+44.78461i -12+28.97056i -12+20.78461i -12+15.6387i -12+12i -12+9.20792i -12+6.9282i -12+4.97056i -12+3.21539i -12+1.57983i -12+0i -12-1.57983i -12-3.21539i -12-4.97056i -12-6.9282i -12-9.20792i -12-12i -12-15.6387i -12-20.78461i -12-28.97056i -12-44.78461i -12-91.14905i
n= 25 : 325+0i -12.5+98.94769i -12.5+48.68429i -12.5+31.5714i -12.5+22.73742i -12.5+17.20477i -12.5+13.31115i -12.5+10.3409i -12.5+7.93274i -12.5+5.88205i -12.5+4.0615i -12.5+2.3845i -12.5+0.78643i -12.5-0.78643i -12.5-2.3845i -12.5-4.0615i -12.5-5.88205i -12.5-7.93274i -12.5-10.3409i -12.5-13.31115i -12.5-17.20477i -12.5-22.73742i -12.5-31.5714i -12.5-48.68429i -12.5-98.94769i
n= 26 : 351+0i -13+107.0646i -13+52.74307i -13+34.27818i -13+24.76943i -13+18.83375i -13+14.67397i -13+11.517i -13+8.97325i -13+6.82293i -13+4.93025i -13+3.20421i -13+1.57849i -13+0i -13-1.57849i -13-3.20421i -13-4.93025i -13-6.82293i -13-8.97325i -13-11.517i -13-14.67397i -13-18.83375i -13-24.76943i -13-34.27818i -13-52.74307i -13-107.0646i
n= 27 : 378+0i -13.5+115.4999i -13.5+56.96098i -13.5+37.09095i -13.5+26.88071i -13.5+20.52575i -13.5+16.08867i -13.5+12.73659i -13.5+10.05038i -13.5+7.79423i -13.5+5.82333i -13.5+4.04163i -13.5+2.38041i -13.5+0.78629i -13.5-0.78629i -13.5-2.38041i -13.5-4.04163i -13.5-5.82333i -13.5-7.79423i -13.5-10.05038i -13.5-12.73659i -13.5-16.08867i -13.5-20.52575i -13.5-26.88071i -13.5-37.09095i -13.5-56.96098i -13.5-115.4999i
n= 28 : 406+0i -14+124.2534i -14+61.33801i -14+40.0097i -14+29.0713i -14+22.28087i -14+17.55544i -14+14i -14+11.16463i -14+8.79678i -14+6.74204i -14+4.89881i -14+3.19541i -14+1.57742i -14+0i -14-1.57742i -14-3.19541i -14-4.89881i -14-6.74204i -14-8.79678i -14-11.16463i -14-14i -14-17.55544i -14-22.28087i -14-29.0713i -14-40.0097i -14-61.33801i -14-124.2534i
n= 29 : 435+0i -14.5+133.3253i -14.5+65.87416i -14.5+43.03447i -14.5+31.34124i -14.5+24.09919i -14.5+19.07442i -14.5+15.30746i -14.5+12.31641i -14.5+9.83124i -14.5+7.68741i -14.5+5.77733i -14.5+4.02591i -14.5+2.37715i -14.5+0.78617i -14.5-0.78617i -14.5-2.37715i -14.5-4.02591i -14.5-5.77733i -14.5-7.68741i -14.5-9.83124i -14.5-12.31641i -14.5-15.30746i -14.5-19.07442i -14.5-24.09919i -14.5-31.34124i -14.5-43.03447i -14.5-65.87416i -14.5-133.3253i
n= 30 : 465+0i -15+142.7155i -15+70.56945i -15+46.16525i -15+33.69055i -15+25.98076i -15+20.64573i -15+16.65919i -15+13.50606i -15+10.89814i -15+8.66025i -15+6.67843i -15+4.8738i -15+3.18835i -15+1.57656i -15+0i -15-1.57656i -15-3.18835i -15-4.8738i -15-6.67843i -15-8.66025i -15-10.89814i -15-13.50606i -15-16.65919i -15-20.64573i -15-25.98076i -15-33.69055i -15-46.16525i -15-70.56945i -15-142.7155i
>
>
> ## polyroot():
> stopifnot(abs(1 + polyroot(choose(8, 0:8))) < 1e-10)# maybe smaller..
>
> ## precision of complex numbers
> signif(1.678932e80+0i, 5)
[1] 1.6789e+80+0i
> signif(1.678932e-300+0i, 5)
[1] 1.6789e-300+0i
> signif(1.678932e-302+0i, 5)
[1] 1.6789e-302+0i
> signif(1.678932e-303+0i, 5)
[1] 1.6789e-303+0i
> signif(1.678932e-304+0i, 5)
[1] 1.6789e-304+0i
> signif(1.678932e-305+0i, 5)
[1] 1.6789e-305+0i
> signif(1.678932e-306+0i, 5)
[1] 1.6789e-306+0i
> signif(1.678932e-307+0i, 5)
[1] 1.6789e-307+0i
> signif(1.678932e-308+0i, 5)
[1] 1.6789e-308+0i
> signif(1.678932-1.238276i, 5)
[1] 1.6789-1.2383i
> signif(1.678932-1.238276e-1i, 5)
[1] 1.6789-0.1238i
> signif(1.678932-1.238276e-2i, 5)
[1] 1.6789-0.0124i
> signif(1.678932-1.238276e-3i, 5)
[1] 1.6789-0.0012i
> signif(1.678932-1.238276e-4i, 5)
[1] 1.6789-0.0001i
> signif(1.678932-1.238276e-5i, 5)
[1] 1.6789+0i
> signif(8.678932-9.238276i, 5)
[1] 8.6789-9.2383i
> ## prior to 2.2.0 rounded real and imaginary parts separately.
>
>
> ## Complex Trig.:
> abs(Im(cos(acos(1i))) - 1) < 2*Meps
[1] TRUE
> abs(Im(sin(asin(1i))) - 1) < 2*Meps
[1] TRUE
> ##P (1 - Im(sin(asin(Ii))))/Meps
> ##P (1 - Im(cos(acos(Ii))))/Meps
> abs(Im(asin(sin(1i))) - 1) < 2*Meps
[1] TRUE
> all.equal(cos(1i), cos(-1i)) # i.e. Im(acos(*)) gives + or - 1i:
[1] TRUE
> abs(abs(Im(acos(cos(1i)))) - 1) < 4*Meps
[1] TRUE
>
>
> set.seed(123) # want reproducible output
> Isi <- Im(sin(asin(1i + rnorm(100))))
> all(abs(Isi-1) < 100* Meps)
[1] TRUE
> ##P table(2*abs(Isi-1) / Meps)
> Isi <- Im(cos(acos(1i + rnorm(100))))
> all(abs(Isi-1) < 100* Meps)
[1] TRUE
> ##P table(2*abs(Isi-1) / Meps)
> Isi <- Im(atan(tan(1i + rnorm(100)))) #-- tan(atan(..)) does NOT work (Math!)
> all(abs(Isi-1) < 100* Meps)
[1] TRUE
> ##P table(2*abs(Isi-1) / Meps)
>
> set.seed(123)
> z <- complex(real = rnorm(100), imag = rnorm(100))
> stopifnot(Mod ( 1 - sin(z) / ( (exp(1i*z)-exp(-1i*z))/(2*1i) )) < 20 * Meps)
> ## end of moved from complex.Rd
>
>
> ## PR#7781
> ## This is not as given by e.g. glibc on AMD64
> (z <- tan(1+1000i)) # 0+1i from R's own code.
[1] 0+1i
> stopifnot(is.finite(z))
> ##
>
>
> ## Branch cuts in complex inverse trig functions
> atan(2)
[1] 1.107149
> atan(2+0i)
[1] 1.107149+0i
> tan(atan(2+0i))
[1] 2+0i
> ## should not expect exactly 0i in result
> round(atan(1.0001+0i), 7)
[1] 0.7854482+0i
> round(atan(0.9999+0i), 7)
[1] 0.7853482+0i
> ## previously not as in Abramowitz & Stegun.
>
>
> ## typo in z_atan2.
> (z <- atan2(0+1i, 0+0i))
[1] 1.570796+0i
> stopifnot(all.equal(z, pi/2+0i))
> ## was NA in 2.1.1
>
>
> ## Hyperbolic
> x <- seq(-3, 3, len=200)
> Meps <- .Machine$double.eps
> stopifnot(
+ Mod(cosh(x) - cos(1i*x)) < 20*Meps,
+ Mod(sinh(x) - sin(1i*x)/1i) < 20*Meps
+ )
> ## end of moved from Hyperbolic.Rd
>
> ## values near and on branch cuts
> options(digits=5)
> z <- c(2+0i, 2-0.0001i, -2+0i, -2+0.0001i)
> asin(z)
[1] 1.5708-1.317i 1.5707-1.317i -1.5708+1.317i -1.5707+1.317i
> acos(z)
[1] 0.0000+1.317i 0.0001+1.317i 3.1416-1.317i 3.1415-1.317i
> atanh(z)
[1] 0.5493-1.5708i 0.5493-1.5708i -0.5493+1.5708i -0.5493+1.5708i
> z <- c(0+2i, 0.0001+2i, 0-2i, -0.0001i-2i)
> asinh(z)
[1] 1.317+1.5708i 1.317+1.5707i -1.317-1.5708i -1.317-1.5708i
> acosh(z)
[1] 1.4436+1.5708i 1.4436+1.5708i -1.4436+1.5708i -1.4437+1.5708i
> atan(z)
[1] 1.5708+0.5493i 1.5708+0.5493i -1.5708-0.5493i -1.5708-0.5493i
> ## According to C99, should have continuity from the side given if there
> ## are not signed zeros
> ## Both glibc 2.12 and Mac OS X 10.6 use continuity from above in the first set
> ## but they seem to assume signed zeros.
> ## Windows gave incorrect (NaN) values on the cuts.
>
> ## Not a regression test, but rather one of the good cases:
> (cNaN <- as.complex("NaN"))
[1] NaN+0i
> stopifnot(identical(cNaN, complex(re = NaN)), is.nan(Re(cNaN)), Im(cNaN) == 0)
> dput(cNaN) ## (real = NaN, imaginary = 0)
complex(real=NaN, imaginary=0)
> ## Partly new behavior:
> (c0NaN <- complex(real=0, im=NaN))
[1] 0+NaNi
> (cNaNaN <- complex(re=NaN, im=NaN))
[1] NaN+NaNi
> stopifnot(identical(cNaN, as.complex(NaN)),
+ identical(vapply(c(cNaN, c0NaN, cNaNaN), format, ""),
+ c("NaN+0i", "0+NaNi", "NaN+NaNi")),
+ identical(cNaN, NaN + 0i),
+ identical(cNaN, Conj(cNaN)),
+ identical(cNaN, cNaN+cNaN),
+
+ identical(cNaNaN, 1i * NaN),
+ identical(cNaNaN, complex(modulus= NaN)),
+ identical(cNaNaN, complex(argument= NaN)),
+ identical(cNaNaN, complex(arg=NaN, mod=NaN)),
+
+ identical(c0NaN, c0NaN+c0NaN), # !
+ ## Platform dependent, not TRUE e.g. on F21 gcc 4.9.2:
+ ## identical(NA_complex_, NaN + NA_complex_ ) ,
+ ## Probably TRUE, but by a standard ??
+ ## identical(cNaNaN, 2 * c0NaN), # C-library arithmetic
+ ## identical(cNaNaN, 2 * cNaN), # C-library arithmetic
+ ## identical(cNaNaN, NA_complex_ * Inf),
+ TRUE)
>