-
Notifications
You must be signed in to change notification settings - Fork 204
/
Copy pathdatasets.Rout.save
669 lines (560 loc) · 27 KB
/
datasets.Rout.save
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
R version 3.3.1 RC (2016-06-14 r70774) -- "Bug in Your Hair"
Copyright (C) 2016 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> #### Simple integrity tests of the system datasets
>
> options(useFancyQuotes=FALSE)
> env <- as.environment("package:datasets")
> d <- ls(env) # don't want .names
> for(f in d) {
+ cat("\n** structure of dataset ", f, "\n", sep="")
+ str(get(f, envir=env, inherits=FALSE))
+ }
** structure of dataset AirPassengers
Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 148 148 136 119 ...
** structure of dataset BJsales
Time-Series [1:150] from 1 to 150: 200 200 199 199 199 ...
** structure of dataset BJsales.lead
Time-Series [1:150] from 1 to 150: 10.01 10.07 10.32 9.75 10.33 ...
** structure of dataset BOD
'data.frame': 6 obs. of 2 variables:
$ Time : num 1 2 3 4 5 7
$ demand: num 8.3 10.3 19 16 15.6 19.8
- attr(*, "reference")= chr "A1.4, p. 270"
** structure of dataset CO2
Classes 'nfnGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame': 84 obs. of 5 variables:
$ Plant : Ord.factor w/ 12 levels "Qn1"<"Qn2"<"Qn3"<..: 1 1 1 1 1 1 1 2 2 2 ...
$ Type : Factor w/ 2 levels "Quebec","Mississippi": 1 1 1 1 1 1 1 1 1 1 ...
$ Treatment: Factor w/ 2 levels "nonchilled","chilled": 1 1 1 1 1 1 1 1 1 1 ...
$ conc : num 95 175 250 350 500 675 1000 95 175 250 ...
$ uptake : num 16 30.4 34.8 37.2 35.3 39.2 39.7 13.6 27.3 37.1 ...
- attr(*, "formula")=Class 'formula' language uptake ~ conc | Plant
.. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
- attr(*, "outer")=Class 'formula' language ~Treatment * Type
.. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
- attr(*, "labels")=List of 2
..$ x: chr "Ambient carbon dioxide concentration"
..$ y: chr "CO2 uptake rate"
- attr(*, "units")=List of 2
..$ x: chr "(uL/L)"
..$ y: chr "(umol/m^2 s)"
** structure of dataset ChickWeight
Classes 'nfnGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame': 578 obs. of 4 variables:
$ weight: num 42 51 59 64 76 93 106 125 149 171 ...
$ Time : num 0 2 4 6 8 10 12 14 16 18 ...
$ Chick : Ord.factor w/ 50 levels "18"<"16"<"15"<..: 15 15 15 15 15 15 15 15 15 15 ...
$ Diet : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "formula")=Class 'formula' language weight ~ Time | Chick
.. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
- attr(*, "outer")=Class 'formula' language ~Diet
.. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
- attr(*, "labels")=List of 2
..$ x: chr "Time"
..$ y: chr "Body weight"
- attr(*, "units")=List of 2
..$ x: chr "(days)"
..$ y: chr "(gm)"
** structure of dataset DNase
Classes 'nfnGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame': 176 obs. of 3 variables:
$ Run : Ord.factor w/ 11 levels "10"<"11"<"9"<..: 4 4 4 4 4 4 4 4 4 4 ...
$ conc : num 0.0488 0.0488 0.1953 0.1953 0.3906 ...
$ density: num 0.017 0.018 0.121 0.124 0.206 0.215 0.377 0.374 0.614 0.609 ...
- attr(*, "formula")=Class 'formula' language density ~ conc | Run
.. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
- attr(*, "labels")=List of 2
..$ x: chr "DNase concentration"
..$ y: chr "Optical density"
- attr(*, "units")=List of 1
..$ x: chr "(ng/ml)"
** structure of dataset EuStockMarkets
Time-Series [1:1860, 1:4] from 1991 to 1999: 1629 1614 1607 1621 1618 ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:4] "DAX" "SMI" "CAC" "FTSE"
** structure of dataset Formaldehyde
'data.frame': 6 obs. of 2 variables:
$ carb : num 0.1 0.3 0.5 0.6 0.7 0.9
$ optden: num 0.086 0.269 0.446 0.538 0.626 0.782
** structure of dataset HairEyeColor
table [1:4, 1:4, 1:2] 32 53 10 3 11 50 10 30 10 25 ...
- attr(*, "dimnames")=List of 3
..$ Hair: chr [1:4] "Black" "Brown" "Red" "Blond"
..$ Eye : chr [1:4] "Brown" "Blue" "Hazel" "Green"
..$ Sex : chr [1:2] "Male" "Female"
** structure of dataset Harman23.cor
List of 3
$ cov : num [1:8, 1:8] 1 0.846 0.805 0.859 0.473 0.398 0.301 0.382 0.846 1 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:8] "height" "arm.span" "forearm" "lower.leg" ...
.. ..$ : chr [1:8] "height" "arm.span" "forearm" "lower.leg" ...
$ center: num [1:8] 0 0 0 0 0 0 0 0
$ n.obs : num 305
** structure of dataset Harman74.cor
List of 3
$ cov : num [1:24, 1:24] 1 0.318 0.403 0.468 0.321 0.335 0.304 0.332 0.326 0.116 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
.. ..$ : chr [1:24] "VisualPerception" "Cubes" "PaperFormBoard" "Flags" ...
$ center: num [1:24] 0 0 0 0 0 0 0 0 0 0 ...
$ n.obs : num 145
** structure of dataset Indometh
Classes 'nfnGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame': 66 obs. of 3 variables:
$ Subject: Ord.factor w/ 6 levels "1"<"4"<"2"<"5"<..: 1 1 1 1 1 1 1 1 1 1 ...
$ time : num 0.25 0.5 0.75 1 1.25 2 3 4 5 6 ...
$ conc : num 1.5 0.94 0.78 0.48 0.37 0.19 0.12 0.11 0.08 0.07 ...
- attr(*, "formula")=Class 'formula' language conc ~ time | Subject
.. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
- attr(*, "labels")=List of 2
..$ x: chr "Time since drug administration"
..$ y: chr "Indomethacin concentration"
- attr(*, "units")=List of 2
..$ x: chr "(hr)"
..$ y: chr "(mcg/ml)"
** structure of dataset InsectSprays
'data.frame': 72 obs. of 2 variables:
$ count: num 10 7 20 14 14 12 10 23 17 20 ...
$ spray: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...
** structure of dataset JohnsonJohnson
Time-Series [1:84] from 1960 to 1981: 0.71 0.63 0.85 0.44 0.61 0.69 0.92 0.55 0.72 0.77 ...
** structure of dataset LakeHuron
Time-Series [1:98] from 1875 to 1972: 580 582 581 581 580 ...
** structure of dataset LifeCycleSavings
'data.frame': 50 obs. of 5 variables:
$ sr : num 11.43 12.07 13.17 5.75 12.88 ...
$ pop15: num 29.4 23.3 23.8 41.9 42.2 ...
$ pop75: num 2.87 4.41 4.43 1.67 0.83 2.85 1.34 0.67 1.06 1.14 ...
$ dpi : num 2330 1508 2108 189 728 ...
$ ddpi : num 2.87 3.93 3.82 0.22 4.56 2.43 2.67 6.51 3.08 2.8 ...
** structure of dataset Loblolly
Classes 'nfnGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame': 84 obs. of 3 variables:
$ height: num 4.51 10.89 28.72 41.74 52.7 ...
$ age : num 3 5 10 15 20 25 3 5 10 15 ...
$ Seed : Ord.factor w/ 14 levels "329"<"327"<"325"<..: 10 10 10 10 10 10 13 13 13 13 ...
- attr(*, "formula")=Class 'formula' language height ~ age | Seed
.. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
- attr(*, "labels")=List of 2
..$ x: chr "Age of tree"
..$ y: chr "Height of tree"
- attr(*, "units")=List of 2
..$ x: chr "(yr)"
..$ y: chr "(ft)"
** structure of dataset Nile
Time-Series [1:100] from 1871 to 1970: 1120 1160 963 1210 1160 1160 813 1230 1370 1140 ...
** structure of dataset Orange
Classes 'nfnGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame': 35 obs. of 3 variables:
$ Tree : Ord.factor w/ 5 levels "3"<"1"<"5"<"2"<..: 2 2 2 2 2 2 2 4 4 4 ...
$ age : num 118 484 664 1004 1231 ...
$ circumference: num 30 58 87 115 120 142 145 33 69 111 ...
- attr(*, "formula")=Class 'formula' language circumference ~ age | Tree
.. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
- attr(*, "labels")=List of 2
..$ x: chr "Time since December 31, 1968"
..$ y: chr "Trunk circumference"
- attr(*, "units")=List of 2
..$ x: chr "(days)"
..$ y: chr "(mm)"
** structure of dataset OrchardSprays
'data.frame': 64 obs. of 4 variables:
$ decrease : num 57 95 8 69 92 90 15 2 84 6 ...
$ rowpos : num 1 2 3 4 5 6 7 8 1 2 ...
$ colpos : num 1 1 1 1 1 1 1 1 2 2 ...
$ treatment: Factor w/ 8 levels "A","B","C","D",..: 4 5 2 8 7 6 3 1 3 2 ...
** structure of dataset PlantGrowth
'data.frame': 30 obs. of 2 variables:
$ weight: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14 ...
$ group : Factor w/ 3 levels "ctrl","trt1",..: 1 1 1 1 1 1 1 1 1 1 ...
** structure of dataset Puromycin
'data.frame': 23 obs. of 3 variables:
$ conc : num 0.02 0.02 0.06 0.06 0.11 0.11 0.22 0.22 0.56 0.56 ...
$ rate : num 76 47 97 107 123 139 159 152 191 201 ...
$ state: Factor w/ 2 levels "treated","untreated": 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "reference")= chr "A1.3, p. 269"
** structure of dataset Seatbelts
Time-Series [1:192, 1:8] from 1969 to 1985: 107 97 102 87 119 106 110 106 107 134 ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:8] "DriversKilled" "drivers" "front" "rear" ...
** structure of dataset Theoph
Classes 'nfnGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame': 132 obs. of 5 variables:
$ Subject: Ord.factor w/ 12 levels "6"<"7"<"8"<"11"<..: 11 11 11 11 11 11 11 11 11 11 ...
$ Wt : num 79.6 79.6 79.6 79.6 79.6 79.6 79.6 79.6 79.6 79.6 ...
$ Dose : num 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 ...
$ Time : num 0 0.25 0.57 1.12 2.02 ...
$ conc : num 0.74 2.84 6.57 10.5 9.66 8.58 8.36 7.47 6.89 5.94 ...
- attr(*, "formula")=Class 'formula' language conc ~ Time | Subject
.. ..- attr(*, ".Environment")=<environment: R_EmptyEnv>
- attr(*, "labels")=List of 2
..$ x: chr "Time since drug administration"
..$ y: chr "Theophylline concentration in serum"
- attr(*, "units")=List of 2
..$ x: chr "(hr)"
..$ y: chr "(mg/l)"
** structure of dataset Titanic
table [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ...
- attr(*, "dimnames")=List of 4
..$ Class : chr [1:4] "1st" "2nd" "3rd" "Crew"
..$ Sex : chr [1:2] "Male" "Female"
..$ Age : chr [1:2] "Child" "Adult"
..$ Survived: chr [1:2] "No" "Yes"
** structure of dataset ToothGrowth
'data.frame': 60 obs. of 3 variables:
$ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
$ supp: Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 ...
$ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
** structure of dataset UCBAdmissions
table [1:2, 1:2, 1:6] 512 313 89 19 353 207 17 8 120 205 ...
- attr(*, "dimnames")=List of 3
..$ Admit : chr [1:2] "Admitted" "Rejected"
..$ Gender: chr [1:2] "Male" "Female"
..$ Dept : chr [1:6] "A" "B" "C" "D" ...
** structure of dataset UKDriverDeaths
Time-Series [1:192] from 1969 to 1985: 1687 1508 1507 1385 1632 ...
** structure of dataset UKgas
Time-Series [1:108] from 1960 to 1987: 160.1 129.7 84.8 120.1 160.1 ...
** structure of dataset USAccDeaths
Time-Series [1:72] from 1973 to 1979: 9007 8106 8928 9137 10017 ...
** structure of dataset USArrests
'data.frame': 50 obs. of 4 variables:
$ Murder : num 13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4 ...
$ Assault : int 236 263 294 190 276 204 110 238 335 211 ...
$ UrbanPop: int 58 48 80 50 91 78 77 72 80 60 ...
$ Rape : num 21.2 44.5 31 19.5 40.6 38.7 11.1 15.8 31.9 25.8 ...
** structure of dataset USJudgeRatings
'data.frame': 43 obs. of 12 variables:
$ CONT: num 5.7 6.8 7.2 6.8 7.3 6.2 10.6 7 7.3 8.2 ...
$ INTG: num 7.9 8.9 8.1 8.8 6.4 8.8 9 5.9 8.9 7.9 ...
$ DMNR: num 7.7 8.8 7.8 8.5 4.3 8.7 8.9 4.9 8.9 6.7 ...
$ DILG: num 7.3 8.5 7.8 8.8 6.5 8.5 8.7 5.1 8.7 8.1 ...
$ CFMG: num 7.1 7.8 7.5 8.3 6 7.9 8.5 5.4 8.6 7.9 ...
$ DECI: num 7.4 8.1 7.6 8.5 6.2 8 8.5 5.9 8.5 8 ...
$ PREP: num 7.1 8 7.5 8.7 5.7 8.1 8.5 4.8 8.4 7.9 ...
$ FAMI: num 7.1 8 7.5 8.7 5.7 8 8.5 5.1 8.4 8.1 ...
$ ORAL: num 7.1 7.8 7.3 8.4 5.1 8 8.6 4.7 8.4 7.7 ...
$ WRIT: num 7 7.9 7.4 8.5 5.3 8 8.4 4.9 8.5 7.8 ...
$ PHYS: num 8.3 8.5 7.9 8.8 5.5 8.6 9.1 6.8 8.8 8.5 ...
$ RTEN: num 7.8 8.7 7.8 8.7 4.8 8.6 9 5 8.8 7.9 ...
** structure of dataset USPersonalExpenditure
num [1:5, 1:5] 22.2 10.5 3.53 1.04 0.341 44.5 15.5 5.76 1.98 0.974 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:5] "Food and Tobacco" "Household Operation" "Medical and Health" "Personal Care" ...
..$ : chr [1:5] "1940" "1945" "1950" "1955" ...
** structure of dataset UScitiesD
Class 'dist' atomic [1:45] 587 1212 701 1936 604 748 2139 2182 543 920 ...
..- attr(*, "Labels")= chr [1:10] "Atlanta" "Chicago" "Denver" "Houston" ...
..- attr(*, "Size")= int 10
..- attr(*, "call")= language as.dist.default(m = t(cities.mat))
..- attr(*, "Diag")= logi FALSE
..- attr(*, "Upper")= logi FALSE
** structure of dataset VADeaths
num [1:5, 1:4] 11.7 18.1 26.9 41 66 8.7 11.7 20.3 30.9 54.3 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:5] "50-54" "55-59" "60-64" "65-69" ...
..$ : chr [1:4] "Rural Male" "Rural Female" "Urban Male" "Urban Female"
** structure of dataset WWWusage
Time-Series [1:100] from 1 to 100: 88 84 85 85 84 85 83 85 88 89 ...
** structure of dataset WorldPhones
num [1:7, 1:7] 45939 60423 64721 68484 71799 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:7] "1951" "1956" "1957" "1958" ...
..$ : chr [1:7] "N.Amer" "Europe" "Asia" "S.Amer" ...
** structure of dataset ability.cov
List of 3
$ cov : num [1:6, 1:6] 24.64 5.99 33.52 6.02 20.75 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:6] "general" "picture" "blocks" "maze" ...
.. ..$ : chr [1:6] "general" "picture" "blocks" "maze" ...
$ center: num [1:6] 0 0 0 0 0 0
$ n.obs : num 112
** structure of dataset airmiles
Time-Series [1:24] from 1937 to 1960: 412 480 683 1052 1385 ...
** structure of dataset airquality
'data.frame': 153 obs. of 6 variables:
$ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
$ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
$ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
$ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
$ Month : int 5 5 5 5 5 5 5 5 5 5 ...
$ Day : int 1 2 3 4 5 6 7 8 9 10 ...
** structure of dataset anscombe
'data.frame': 11 obs. of 8 variables:
$ x1: num 10 8 13 9 11 14 6 4 12 7 ...
$ x2: num 10 8 13 9 11 14 6 4 12 7 ...
$ x3: num 10 8 13 9 11 14 6 4 12 7 ...
$ x4: num 8 8 8 8 8 8 8 19 8 8 ...
$ y1: num 8.04 6.95 7.58 8.81 8.33 ...
$ y2: num 9.14 8.14 8.74 8.77 9.26 8.1 6.13 3.1 9.13 7.26 ...
$ y3: num 7.46 6.77 12.74 7.11 7.81 ...
$ y4: num 6.58 5.76 7.71 8.84 8.47 7.04 5.25 12.5 5.56 7.91 ...
** structure of dataset attenu
'data.frame': 182 obs. of 5 variables:
$ event : num 1 2 2 2 2 2 2 2 2 2 ...
$ mag : num 7 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 ...
$ station: Factor w/ 117 levels "1008","1011",..: 24 13 15 68 39 74 22 1 8 55 ...
$ dist : num 12 148 42 85 107 109 156 224 293 359 ...
$ accel : num 0.359 0.014 0.196 0.135 0.062 0.054 0.014 0.018 0.01 0.004 ...
** structure of dataset attitude
'data.frame': 30 obs. of 7 variables:
$ rating : num 43 63 71 61 81 43 58 71 72 67 ...
$ complaints: num 51 64 70 63 78 55 67 75 82 61 ...
$ privileges: num 30 51 68 45 56 49 42 50 72 45 ...
$ learning : num 39 54 69 47 66 44 56 55 67 47 ...
$ raises : num 61 63 76 54 71 54 66 70 71 62 ...
$ critical : num 92 73 86 84 83 49 68 66 83 80 ...
$ advance : num 45 47 48 35 47 34 35 41 31 41 ...
** structure of dataset austres
Time-Series [1:89] from 1971 to 1993: 13067 13130 13198 13254 13304 ...
** structure of dataset beaver1
'data.frame': 114 obs. of 4 variables:
$ day : num 346 346 346 346 346 346 346 346 346 346 ...
$ time : num 840 850 900 910 920 930 940 950 1000 1010 ...
$ temp : num 36.3 36.3 36.4 36.4 36.5 ...
$ activ: num 0 0 0 0 0 0 0 0 0 0 ...
** structure of dataset beaver2
'data.frame': 100 obs. of 4 variables:
$ day : num 307 307 307 307 307 307 307 307 307 307 ...
$ time : num 930 940 950 1000 1010 1020 1030 1040 1050 1100 ...
$ temp : num 36.6 36.7 36.9 37.1 37.2 ...
$ activ: num 0 0 0 0 0 0 0 0 0 0 ...
** structure of dataset cars
'data.frame': 50 obs. of 2 variables:
$ speed: num 4 4 7 7 8 9 10 10 10 11 ...
$ dist : num 2 10 4 22 16 10 18 26 34 17 ...
** structure of dataset chickwts
'data.frame': 71 obs. of 2 variables:
$ weight: num 179 160 136 227 217 168 108 124 143 140 ...
$ feed : Factor w/ 6 levels "casein","horsebean",..: 2 2 2 2 2 2 2 2 2 2 ...
** structure of dataset co2
Time-Series [1:468] from 1959 to 1998: 315 316 316 318 318 ...
** structure of dataset crimtab
'table' int [1:42, 1:22] 0 0 0 0 0 0 1 0 0 0 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:42] "9.4" "9.5" "9.6" "9.7" ...
..$ : chr [1:22] "142.24" "144.78" "147.32" "149.86" ...
** structure of dataset discoveries
Time-Series [1:100] from 1860 to 1959: 5 3 0 2 0 3 2 3 6 1 ...
** structure of dataset esoph
'data.frame': 88 obs. of 5 variables:
$ agegp : Ord.factor w/ 6 levels "25-34"<"35-44"<..: 1 1 1 1 1 1 1 1 1 1 ...
$ alcgp : Ord.factor w/ 4 levels "0-39g/day"<"40-79"<..: 1 1 1 1 2 2 2 2 3 3 ...
$ tobgp : Ord.factor w/ 4 levels "0-9g/day"<"10-19"<..: 1 2 3 4 1 2 3 4 1 2 ...
$ ncases : num 0 0 0 0 0 0 0 0 0 0 ...
$ ncontrols: num 40 10 6 5 27 7 4 7 2 1 ...
** structure of dataset euro
Named num [1:11] 13.76 40.34 1.96 166.39 5.95 ...
- attr(*, "names")= chr [1:11] "ATS" "BEF" "DEM" "ESP" ...
** structure of dataset euro.cross
num [1:11, 1:11] 1 0.3411 7.0355 0.0827 2.3143 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:11] "ATS" "BEF" "DEM" "ESP" ...
..$ : chr [1:11] "ATS" "BEF" "DEM" "ESP" ...
** structure of dataset eurodist
Class 'dist' atomic [1:210] 3313 2963 3175 3339 2762 ...
..- attr(*, "Size")= num 21
..- attr(*, "Labels")= chr [1:21] "Athens" "Barcelona" "Brussels" "Calais" ...
** structure of dataset faithful
'data.frame': 272 obs. of 2 variables:
$ eruptions: num 3.6 1.8 3.33 2.28 4.53 ...
$ waiting : num 79 54 74 62 85 55 88 85 51 85 ...
** structure of dataset fdeaths
Time-Series [1:72] from 1974 to 1980: 901 689 827 677 522 406 441 393 387 582 ...
** structure of dataset freeny
'data.frame': 39 obs. of 5 variables:
$ y : Time-Series from 1962 to 1972: 8.79 8.79 8.81 8.81 8.91 ...
$ lag.quarterly.revenue: num 8.8 8.79 8.79 8.81 8.81 ...
$ price.index : num 4.71 4.7 4.69 4.69 4.64 ...
$ income.level : num 5.82 5.83 5.83 5.84 5.85 ...
$ market.potential : num 13 13 13 13 13 ...
** structure of dataset freeny.x
num [1:39, 1:4] 8.8 8.79 8.79 8.81 8.81 ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:4] "lag quarterly revenue" "price index" "income level" "market potential"
** structure of dataset freeny.y
Time-Series [1:39] from 1962 to 1972: 8.79 8.79 8.81 8.81 8.91 ...
** structure of dataset infert
'data.frame': 248 obs. of 8 variables:
$ education : Factor w/ 3 levels "0-5yrs","6-11yrs",..: 1 1 1 1 2 2 2 2 2 2 ...
$ age : num 26 42 39 34 35 36 23 32 21 28 ...
$ parity : num 6 1 6 4 3 4 1 2 1 2 ...
$ induced : num 1 1 2 2 1 2 0 0 0 0 ...
$ case : num 1 1 1 1 1 1 1 1 1 1 ...
$ spontaneous : num 2 0 0 0 1 1 0 0 1 0 ...
$ stratum : int 1 2 3 4 5 6 7 8 9 10 ...
$ pooled.stratum: num 3 1 4 2 32 36 6 22 5 19 ...
** structure of dataset iris
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
** structure of dataset iris3
num [1:50, 1:4, 1:3] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
- attr(*, "dimnames")=List of 3
..$ : NULL
..$ : chr [1:4] "Sepal L." "Sepal W." "Petal L." "Petal W."
..$ : chr [1:3] "Setosa" "Versicolor" "Virginica"
** structure of dataset islands
Named num [1:48] 11506 5500 16988 2968 16 ...
- attr(*, "names")= chr [1:48] "Africa" "Antarctica" "Asia" "Australia" ...
** structure of dataset ldeaths
Time-Series [1:72] from 1974 to 1980: 3035 2552 2704 2554 2014 ...
** structure of dataset lh
Time-Series [1:48] from 1 to 48: 2.4 2.4 2.4 2.2 2.1 1.5 2.3 2.3 2.5 2 ...
** structure of dataset longley
'data.frame': 16 obs. of 7 variables:
$ GNP.deflator: num 83 88.5 88.2 89.5 96.2 ...
$ GNP : num 234 259 258 285 329 ...
$ Unemployed : num 236 232 368 335 210 ...
$ Armed.Forces: num 159 146 162 165 310 ...
$ Population : num 108 109 110 111 112 ...
$ Year : int 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 ...
$ Employed : num 60.3 61.1 60.2 61.2 63.2 ...
** structure of dataset lynx
Time-Series [1:114] from 1821 to 1934: 269 321 585 871 1475 ...
** structure of dataset mdeaths
Time-Series [1:72] from 1974 to 1980: 2134 1863 1877 1877 1492 ...
** structure of dataset morley
'data.frame': 100 obs. of 3 variables:
$ Expt : int 1 1 1 1 1 1 1 1 1 1 ...
$ Run : int 1 2 3 4 5 6 7 8 9 10 ...
$ Speed: int 850 740 900 1070 930 850 950 980 980 880 ...
** structure of dataset mtcars
'data.frame': 32 obs. of 11 variables:
$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
$ disp: num 160 160 108 258 360 ...
$ hp : num 110 110 93 110 175 105 245 62 95 123 ...
$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
$ wt : num 2.62 2.88 2.32 3.21 3.44 ...
$ qsec: num 16.5 17 18.6 19.4 17 ...
$ vs : num 0 0 1 1 0 1 0 1 1 1 ...
$ am : num 1 1 1 0 0 0 0 0 0 0 ...
$ gear: num 4 4 4 3 3 3 3 4 4 4 ...
$ carb: num 4 4 1 1 2 1 4 2 2 4 ...
** structure of dataset nhtemp
Time-Series [1:60] from 1912 to 1971: 49.9 52.3 49.4 51.1 49.4 47.9 49.8 50.9 49.3 51.9 ...
** structure of dataset nottem
Time-Series [1:240] from 1920 to 1940: 40.6 40.8 44.4 46.7 54.1 58.5 57.7 56.4 54.3 50.5 ...
** structure of dataset npk
'data.frame': 24 obs. of 5 variables:
$ block: Factor w/ 6 levels "1","2","3","4",..: 1 1 1 1 2 2 2 2 3 3 ...
$ N : Factor w/ 2 levels "0","1": 1 2 1 2 2 2 1 1 1 2 ...
$ P : Factor w/ 2 levels "0","1": 2 2 1 1 1 2 1 2 2 2 ...
$ K : Factor w/ 2 levels "0","1": 2 1 1 2 1 2 2 1 1 2 ...
$ yield: num 49.5 62.8 46.8 57 59.8 58.5 55.5 56 62.8 55.8 ...
** structure of dataset occupationalStatus
'table' int [1:8, 1:8] 50 16 12 11 2 12 0 0 19 40 ...
- attr(*, "dimnames")=List of 2
..$ origin : chr [1:8] "1" "2" "3" "4" ...
..$ destination: chr [1:8] "1" "2" "3" "4" ...
** structure of dataset precip
Named num [1:70] 67 54.7 7 48.5 14 17.2 20.7 13 43.4 40.2 ...
- attr(*, "names")= chr [1:70] "Mobile" "Juneau" "Phoenix" "Little Rock" ...
** structure of dataset presidents
Time-Series [1:120] from 1945 to 1975: NA 87 82 75 63 50 43 32 35 60 ...
** structure of dataset pressure
'data.frame': 19 obs. of 2 variables:
$ temperature: num 0 20 40 60 80 100 120 140 160 180 ...
$ pressure : num 0.0002 0.0012 0.006 0.03 0.09 0.27 0.75 1.85 4.2 8.8 ...
** structure of dataset quakes
'data.frame': 1000 obs. of 5 variables:
$ lat : num -20.4 -20.6 -26 -18 -20.4 ...
$ long : num 182 181 184 182 182 ...
$ depth : int 562 650 42 626 649 195 82 194 211 622 ...
$ mag : num 4.8 4.2 5.4 4.1 4 4 4.8 4.4 4.7 4.3 ...
$ stations: int 41 15 43 19 11 12 43 15 35 19 ...
** structure of dataset randu
'data.frame': 400 obs. of 3 variables:
$ x: num 0.000031 0.044495 0.82244 0.322291 0.393595 ...
$ y: num 0.000183 0.155732 0.873416 0.648545 0.826873 ...
$ z: num 0.000824 0.533939 0.838542 0.990648 0.418881 ...
** structure of dataset rivers
num [1:141] 735 320 325 392 524 ...
** structure of dataset rock
'data.frame': 48 obs. of 4 variables:
$ area : int 4990 7002 7558 7352 7943 7979 9333 8209 8393 6425 ...
$ peri : num 2792 3893 3931 3869 3949 ...
$ shape: num 0.0903 0.1486 0.1833 0.1171 0.1224 ...
$ perm : num 6.3 6.3 6.3 6.3 17.1 17.1 17.1 17.1 119 119 ...
** structure of dataset sleep
'data.frame': 20 obs. of 3 variables:
$ extra: num 0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0 2 ...
$ group: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
$ ID : Factor w/ 10 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
** structure of dataset stack.loss
num [1:21] 42 37 37 28 18 18 19 20 15 14 ...
** structure of dataset stack.x
num [1:21, 1:3] 80 80 75 62 62 62 62 62 58 58 ...
- attr(*, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:3] "Air.Flow" "Water.Temp" "Acid.Conc."
** structure of dataset stackloss
'data.frame': 21 obs. of 4 variables:
$ Air.Flow : num 80 80 75 62 62 62 62 62 58 58 ...
$ Water.Temp: num 27 27 25 24 22 23 24 24 23 18 ...
$ Acid.Conc.: num 89 88 90 87 87 87 93 93 87 80 ...
$ stack.loss: num 42 37 37 28 18 18 19 20 15 14 ...
** structure of dataset state.abb
chr [1:50] "AL" "AK" "AZ" "AR" "CA" "CO" "CT" "DE" "FL" ...
** structure of dataset state.area
num [1:50] 51609 589757 113909 53104 158693 ...
** structure of dataset state.center
List of 2
$ x: num [1:50] -86.8 -127.2 -111.6 -92.3 -119.8 ...
$ y: num [1:50] 32.6 49.2 34.2 34.7 36.5 ...
** structure of dataset state.division
Factor w/ 9 levels "New England",..: 4 9 8 5 9 8 1 3 3 3 ...
** structure of dataset state.name
chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansas" "California" ...
** structure of dataset state.region
Factor w/ 4 levels "Northeast","South",..: 2 4 4 2 4 4 1 2 2 2 ...
** structure of dataset state.x77
num [1:50, 1:8] 3615 365 2212 2110 21198 ...
- attr(*, "dimnames")=List of 2
..$ : chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansas" ...
..$ : chr [1:8] "Population" "Income" "Illiteracy" "Life Exp" ...
** structure of dataset sunspot.month
Time-Series [1:3177] from 1749 to 2014: 58 62.6 70 55.7 85 83.5 94.8 66.3 75.9 75.5 ...
** structure of dataset sunspot.year
Time-Series [1:289] from 1700 to 1988: 5 11 16 23 36 58 29 20 10 8 ...
** structure of dataset sunspots
Time-Series [1:2820] from 1749 to 1984: 58 62.6 70 55.7 85 83.5 94.8 66.3 75.9 75.5 ...
** structure of dataset swiss
'data.frame': 47 obs. of 6 variables:
$ Fertility : num 80.2 83.1 92.5 85.8 76.9 76.1 83.8 92.4 82.4 82.9 ...
$ Agriculture : num 17 45.1 39.7 36.5 43.5 35.3 70.2 67.8 53.3 45.2 ...
$ Examination : int 15 6 5 12 17 9 16 14 12 16 ...
$ Education : int 12 9 5 7 15 7 7 8 7 13 ...
$ Catholic : num 9.96 84.84 93.4 33.77 5.16 ...
$ Infant.Mortality: num 22.2 22.2 20.2 20.3 20.6 26.6 23.6 24.9 21 24.4 ...
** structure of dataset treering
Time-Series [1:7980] from -6000 to 1979: 1.34 1.08 1.54 1.32 1.41 ...
** structure of dataset trees
'data.frame': 31 obs. of 3 variables:
$ Girth : num 8.3 8.6 8.8 10.5 10.7 10.8 11 11 11.1 11.2 ...
$ Height: num 70 65 63 72 81 83 66 75 80 75 ...
$ Volume: num 10.3 10.3 10.2 16.4 18.8 19.7 15.6 18.2 22.6 19.9 ...
** structure of dataset uspop
Time-Series [1:19] from 1790 to 1970: 3.93 5.31 7.24 9.64 12.9 17.1 23.2 31.4 39.8 50.2 ...
** structure of dataset volcano
num [1:87, 1:61] 100 101 102 103 104 105 105 106 107 108 ...
** structure of dataset warpbreaks
'data.frame': 54 obs. of 3 variables:
$ breaks : num 26 30 54 25 70 52 51 26 67 18 ...
$ wool : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1 1 ...
$ tension: Factor w/ 3 levels "L","M","H": 1 1 1 1 1 1 1 1 1 2 ...
** structure of dataset women
'data.frame': 15 obs. of 2 variables:
$ height: num 58 59 60 61 62 63 64 65 66 67 ...
$ weight: num 115 117 120 123 126 129 132 135 139 142 ...
>