-
Notifications
You must be signed in to change notification settings - Fork 204
/
Copy pathp-r-random-tests.R
138 lines (110 loc) · 3.79 KB
/
p-r-random-tests.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
##
## RNG tests using DKW inequality for rate of convergence
##
## P(sup | F_n - F | > t) < 2 exp(-2nt^2)
##
## The 2 in front of exp() was derived by Massart. It is the best possible
## constant valid uniformly in t,n,F. For large n*t^2 this agrees with the
## large-sample approximation to the Kolmogorov-Smirnov statistic.
##
superror <- function(rfoo,pfoo,sample.size,...) {
x <- rfoo(sample.size,...)
tx <- table(signif(x, 12)) # such that xi will be sort(unique(x))
xi <- as.numeric(names(tx))
f <- pfoo(xi,...)
fhat <- cumsum(tx)/sample.size
max(abs(fhat-f))
}
pdkwbound <- function(n,t) 2*exp(-2*n*t*t)
qdkwbound <- function(n,p) sqrt(log(p/2)/(-2*n))
dkwtest <- function(stub = "norm", ...,
sample.size = 10000, pthreshold = 0.001,
print.result = TRUE, print.detail = FALSE,
stop.on.failure = TRUE)
{
rfoo <- eval(as.name(paste("r", stub, sep="")))
pfoo <- eval(as.name(paste("p", stub, sep="")))
s <- superror(rfoo, pfoo, sample.size, ...)
if (print.result || print.detail) {
printargs <- substitute(list(...))
printargs[[1]] <- as.name(stub)
cat(deparse(printargs))
if (print.detail)
cat("\nsupremum error = ",signif(s,2),
" with p-value=",min(1,round(pdkwbound(sample.size,s),4)),"\n")
}
rval <- (s < qdkwbound(sample.size,pthreshold))
if (print.result)
cat(c(" FAILED\n"," PASSED\n")[rval+1])
if (stop.on.failure && !rval)
stop("dkwtest failed")
rval
}
.proctime00 <- proc.time() # start timing
dkwtest("binom",size = 1,prob = 0.2)
dkwtest("binom",size = 2,prob = 0.2)
dkwtest("binom",size = 100,prob = 0.2)
dkwtest("binom",size = 1e4,prob = 0.2)
dkwtest("binom",size = 1,prob = 0.8)
dkwtest("binom",size = 100,prob = 0.8)
dkwtest("binom",size = 100,prob = 0.999)
dkwtest("pois",lambda = 0.095)
dkwtest("pois",lambda = 0.95)
dkwtest("pois",lambda = 9.5)
dkwtest("pois",lambda = 95)
dkwtest("nbinom",size = 1,prob = 0.2)
dkwtest("nbinom",size = 2,prob = 0.2)
dkwtest("nbinom",size = 100,prob = 0.2)
dkwtest("nbinom",size = 1e4,prob = 0.2)
dkwtest("nbinom",size = 1,prob = 0.8)
dkwtest("nbinom",size = 100,prob = 0.8)
dkwtest("nbinom",size = 100,prob = 0.999)
dkwtest("norm")
dkwtest("norm",mean = 5,sd = 3)
dkwtest("gamma",shape = 0.1)
dkwtest("gamma",shape = 0.2)
dkwtest("gamma",shape = 10)
dkwtest("gamma",shape = 20)
dkwtest("hyper",m = 40,n = 30,k = 20)
dkwtest("hyper",m = 40,n = 3,k = 20)
dkwtest("hyper",m = 6,n = 3,k = 2)
dkwtest("hyper",m = 5,n = 3,k = 2)
dkwtest("hyper",m = 4,n = 3,k = 2)
dkwtest("signrank",n = 1)
dkwtest("signrank",n = 2)
dkwtest("signrank",n = 10)
dkwtest("signrank",n = 30)
dkwtest("wilcox",m = 40,n = 30)
dkwtest("wilcox",m = 40,n = 10)
dkwtest("wilcox",m = 6,n = 3)
dkwtest("wilcox",m = 5,n = 3)
dkwtest("wilcox",m = 4,n = 3)
dkwtest("chisq",df = 1)
dkwtest("chisq",df = 10)
dkwtest("logis")
dkwtest("logis",location = 4,scale = 2)
dkwtest("t",df = 1)
dkwtest("t",df = 10)
dkwtest("t",df = 40)
dkwtest("beta",shape1 = 1, shape2 = 1)
dkwtest("beta",shape1 = 2, shape2 = 1)
dkwtest("beta",shape1 = 1, shape2 = 2)
dkwtest("beta",shape1 = 2, shape2 = 2)
dkwtest("beta",shape1 = .2,shape2 = .2)
dkwtest("cauchy")
dkwtest("cauchy",location = 4,scale = 2)
dkwtest("f",df1 = 1,df2 = 1)
dkwtest("f",df1 = 1,df2 = 10)
dkwtest("f",df1 = 10,df2 = 10)
dkwtest("f",df1 = 30,df2 = 3)
dkwtest("weibull",shape = 1)
dkwtest("weibull",shape = 4,scale = 4)
## regression test for PR#7314
dkwtest("hyper", m=60, n=100, k=50)
dkwtest("hyper", m=6, n=10, k=5)
dkwtest("hyper", m=600, n=1000, k=500)
## regression test for non-central t bug
dkwtest("t", df=20, ncp=3)
## regression test for non-central F bug
dkwtest("f", df1=10, df2=2, ncp=3)
cat('Time elapsed: ', proc.time() - .proctime00,'\n')