-
Notifications
You must be signed in to change notification settings - Fork 204
/
Copy pathreg-examples3.Rout.save
563 lines (505 loc) · 18.5 KB
/
reg-examples3.Rout.save
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
R version 3.3.1 RC (2016-06-14 r70774) -- "Bug in Your Hair"
Copyright (C) 2016 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ## For examples skipped in testing because they need recommended packages.
>
> ## This is skipped entirely on a Unix-alike if recommended packages are,
> ## so for Windows
> if(!require("MASS")) q()
Loading required package: MASS
>
> pdf("reg-examples-3.pdf", encoding = "ISOLatin1.enc")
>
> ## From datasets
> if(require("survival")) {
+ model3 <- clogit(case ~ spontaneous+induced+strata(stratum), data = infert)
+ print(summary(model3))
+ detach("package:survival", unload = TRUE) # survival (conflicts)
+ }
Loading required package: survival
Call:
coxph(formula = Surv(rep(1, 248L), case) ~ spontaneous + induced +
strata(stratum), data = infert, method = "exact")
n= 248, number of events= 83
coef exp(coef) se(coef) z Pr(>|z|)
spontaneous 1.9859 7.2854 0.3524 5.635 1.75e-08 ***
induced 1.4090 4.0919 0.3607 3.906 9.38e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
exp(coef) exp(-coef) lower .95 upper .95
spontaneous 7.285 0.1373 3.651 14.536
induced 4.092 0.2444 2.018 8.298
Rsquare= 0.193 (max possible= 0.519 )
Likelihood ratio test= 53.15 on 2 df, p=2.869e-12
Wald test = 31.84 on 2 df, p=1.221e-07
Score (logrank) test = 48.44 on 2 df, p=3.032e-11
>
>
> ## From grDevices
> x1 <- matrix(rnorm(1e3), ncol = 2)
> x2 <- matrix(rnorm(1e3, mean = 3, sd = 1.5), ncol = 2)
> x <- rbind(x1, x2)
>
> dcols <- densCols(x)
> graphics::plot(x, col = dcols, pch = 20, main = "n = 1000")
>
>
> ## From graphics:
> ## A largish data set
> set.seed(123)
> n <- 10000
> x1 <- matrix(rnorm(n), ncol = 2)
> x2 <- matrix(rnorm(n, mean = 3, sd = 1.5), ncol = 2)
> x <- rbind(x1, x2)
>
> oldpar <- par(mfrow = c(2, 2))
> smoothScatter(x, nrpoints = 0)
> smoothScatter(x)
>
> ## a different color scheme:
> Lab.palette <- colorRampPalette(c("blue", "orange", "red"), space = "Lab")
> smoothScatter(x, colramp = Lab.palette)
>
> ## somewhat similar, using identical smoothing computations,
> ## but considerably *less* efficient for really large data:
> plot(x, col = densCols(x), pch = 20)
>
> ## use with pairs:
> par(mfrow = c(1, 1))
> y <- matrix(rnorm(40000), ncol = 4) + 3*rnorm(10000)
> y[, c(2,4)] <- -y[, c(2,4)]
> pairs(y, panel = function(...) smoothScatter(..., nrpoints = 0, add = TRUE))
>
> par(oldpar)
>
>
> ## From stats
> # alias.Rd
> op <- options(contrasts = c("contr.helmert", "contr.poly"))
> npk.aov <- aov(yield ~ block + N*P*K, npk)
> alias(npk.aov)
Model :
yield ~ block + N * P * K
Complete :
(Intercept) block1 block2 block3 block4 block5 N1 P1 K1 N1:P1
N1:P1:K1 0 1 1/3 1/6 -3/10 -1/5 0 0 0 0
N1:K1 P1:K1
N1:P1:K1 0 0
> options(op) # reset
>
> # as.hclust.Rd
> if(require("cluster", quietly = TRUE)) {# is a recommended package
+ set.seed(123)
+ x <- matrix(rnorm(30), ncol = 3)
+ hc <- hclust(dist(x), method = "complete")
+ ag <- agnes(x, method = "complete")
+ hcag <- as.hclust(ag)
+ ## The dendrograms order slightly differently:
+ op <- par(mfrow = c(1,2))
+ plot(hc) ; mtext("hclust", side = 1)
+ plot(hcag); mtext("agnes", side = 1)
+ detach("package:cluster")
+ }
>
> # confint.Rd
> counts <- c(18,17,15,20,10,20,25,13,12)
> outcome <- gl(3, 1, 9); treatment <- gl(3, 3)
> glm.D93 <- glm(counts ~ outcome + treatment, family = poisson())
> confint(glm.D93)
Waiting for profiling to be done...
2.5 % 97.5 %
(Intercept) 2.6958215 3.36655581
outcome2 -0.8577018 -0.06255840
outcome3 -0.6753696 0.08244089
treatment2 -0.3932548 0.39325483
treatment3 -0.3932548 0.39325483
> confint.default(glm.D93) # based on asymptotic normality}
2.5 % 97.5 %
(Intercept) 2.7095672 3.37947764
outcome2 -0.8505027 -0.05800787
outcome3 -0.6707552 0.08478093
treatment2 -0.3919928 0.39199279
treatment3 -0.3919928 0.39199279
>
> # contrasts.Rd
> utils::example(factor)
factor> (ff <- factor(substring("statistics", 1:10, 1:10), levels = letters))
[1] s t a t i s t i c s
Levels: a b c d e f g h i j k l m n o p q r s t u v w x y z
factor> as.integer(ff) # the internal codes
[1] 19 20 1 20 9 19 20 9 3 19
factor> (f. <- factor(ff)) # drops the levels that do not occur
[1] s t a t i s t i c s
Levels: a c i s t
factor> ff[, drop = TRUE] # the same, more transparently
[1] s t a t i s t i c s
Levels: a c i s t
factor> factor(letters[1:20], labels = "letter")
[1] letter1 letter2 letter3 letter4 letter5 letter6 letter7 letter8
[9] letter9 letter10 letter11 letter12 letter13 letter14 letter15 letter16
[17] letter17 letter18 letter19 letter20
20 Levels: letter1 letter2 letter3 letter4 letter5 letter6 letter7 ... letter20
factor> class(ordered(4:1)) # "ordered", inheriting from "factor"
[1] "ordered" "factor"
factor> z <- factor(LETTERS[3:1], ordered = TRUE)
factor> ## and "relational" methods work:
factor> stopifnot(sort(z)[c(1,3)] == range(z), min(z) < max(z))
factor> ## Don't show:
factor> of <- ordered(ff)
factor> stopifnot(identical(range(of, rev(of)), of[3:2]),
factor+ identical(max(of), of[2]))
factor> ## End(Don't show)
factor>
factor> ## suppose you want "NA" as a level, and to allow missing values.
factor> (x <- factor(c(1, 2, NA), exclude = NULL))
[1] 1 2 <NA>
Levels: 1 2 <NA>
factor> is.na(x)[2] <- TRUE
factor> x # [1] 1 <NA> <NA>
[1] 1 <NA> <NA>
Levels: 1 2 <NA>
factor> is.na(x)
[1] FALSE TRUE FALSE
factor> # [1] FALSE TRUE FALSE
factor>
factor> ## Using addNA()
factor> Month <- airquality$Month
factor> table(addNA(Month))
5 6 7 8 9 <NA>
31 30 31 31 30 0
factor> table(addNA(Month, ifany = TRUE))
5 6 7 8 9
31 30 31 31 30
> fff <- ff[, drop = TRUE] # reduce to 5 levels.
> contrasts(fff) <- contr.sum(5)[, 1:2]; contrasts(fff)
[,1] [,2] [,3] [,4]
a 1 0 -0.2471257 0.2688164
c 0 1 -0.2471257 0.2688164
i 0 0 -0.1498721 -0.8817814
s 0 0 0.8912491 0.0753323
t -1 -1 -0.2471257 0.2688164
>
> ## using sparse contrasts: % useful, once model.matrix() works with these :
> ffs <- fff
> contrasts(ffs) <- contr.sum(5, sparse = TRUE)[, 1:2]; contrasts(ffs)
[,1] [,2] [,3] [,4]
a 1 0 -0.2471257 0.2688164
c 0 1 -0.2471257 0.2688164
i 0 0 -0.1498721 -0.8817814
s 0 0 0.8912491 0.0753323
t -1 -1 -0.2471257 0.2688164
> stopifnot(all.equal(ffs, fff))
> contrasts(ffs) <- contr.sum(5, sparse = TRUE); contrasts(ffs)
5 x 4 sparse Matrix of class "dgCMatrix"
a 1 . . .
c . 1 . .
i . . 1 .
s . . . 1
t -1 -1 -1 -1
>
> # glm.Rd
> utils::data(anorexia, package = "MASS")
>
> anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
+ family = gaussian, data = anorexia)
> summary(anorex.1)
Call:
glm(formula = Postwt ~ Prewt + Treat + offset(Prewt), family = gaussian,
data = anorexia)
Deviance Residuals:
Min 1Q Median 3Q Max
-14.1083 -4.2773 -0.5484 5.4838 15.2922
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 49.7711 13.3910 3.717 0.000410 ***
Prewt -0.5655 0.1612 -3.509 0.000803 ***
TreatCont -4.0971 1.8935 -2.164 0.033999 *
TreatFT 4.5631 2.1333 2.139 0.036035 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 48.69504)
Null deviance: 4525.4 on 71 degrees of freedom
Residual deviance: 3311.3 on 68 degrees of freedom
AIC: 489.97
Number of Fisher Scoring iterations: 2
>
> # logLik.Rd
> utils::data(Orthodont, package = "nlme")
> fm1 <- lm(distance ~ Sex * age, Orthodont)
> logLik(fm1)
'log Lik.' -239.1209 (df=5)
> logLik(fm1, REML = TRUE)
'log Lik.' -241.7796 (df=5)
>
> # nls.Rd
> od <- options(digits=5)
> ## The muscle dataset in MASS is from an experiment on muscle
> ## contraction on 21 animals. The observed variables are Strip
> ## (identifier of muscle), Conc (Cacl concentration) and Length
> ## (resulting length of muscle section).
> utils::data(muscle, package = "MASS")
>
> ## The non linear model considered is
> ## Length = alpha + beta*exp(-Conc/theta) + error
> ## where theta is constant but alpha and beta may vary with Strip.
>
> with(muscle, table(Strip)) # 2, 3 or 4 obs per strip
Strip
S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
4 4 4 3 3 3 2 2 2 2 3 2 2 2 2 4 4 3 3 3
S21
3
>
> ## We first use the plinear algorithm to fit an overall model,
> ## ignoring that alpha and beta might vary with Strip.
>
> musc.1 <- nls(Length ~ cbind(1, exp(-Conc/th)), muscle,
+ start = list(th = 1), algorithm = "plinear")
> summary(musc.1)
Formula: Length ~ cbind(1, exp(-Conc/th))
Parameters:
Estimate Std. Error t value Pr(>|t|)
th 0.608 0.115 5.31 1.9e-06 ***
.lin1 28.963 1.230 23.55 < 2e-16 ***
.lin2 -34.227 3.793 -9.02 1.4e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.67 on 57 degrees of freedom
Number of iterations to convergence: 5
Achieved convergence tolerance: 9.32e-07
>
> ## Then we use nls' indexing feature for parameters in non-linear
> ## models to use the conventional algorithm to fit a model in which
> ## alpha and beta vary with Strip. The starting values are provided
> ## by the previously fitted model.
> ## Note that with indexed parameters, the starting values must be
> ## given in a list (with names):
> b <- coef(musc.1)
> musc.2 <- nls(Length ~ a[Strip] + b[Strip]*exp(-Conc/th), muscle,
+ start = list(a = rep(b[2], 21), b = rep(b[3], 21), th = b[1]))
> summary(musc.2)
Formula: Length ~ a[Strip] + b[Strip] * exp(-Conc/th)
Parameters:
Estimate Std. Error t value Pr(>|t|)
a1 23.454 0.796 29.46 5.0e-16 ***
a2 28.302 0.793 35.70 < 2e-16 ***
a3 30.801 1.716 17.95 1.7e-12 ***
a4 25.921 3.016 8.60 1.4e-07 ***
a5 23.201 2.891 8.02 3.5e-07 ***
a6 20.120 2.435 8.26 2.3e-07 ***
a7 33.595 1.682 19.98 3.0e-13 ***
a8 39.053 3.753 10.41 8.6e-09 ***
a9 32.137 3.318 9.69 2.5e-08 ***
a10 40.005 3.336 11.99 1.0e-09 ***
a11 36.190 3.109 11.64 1.6e-09 ***
a12 36.911 1.839 20.07 2.8e-13 ***
a13 30.635 1.700 18.02 1.6e-12 ***
a14 34.312 3.495 9.82 2.0e-08 ***
a15 38.395 3.375 11.38 2.3e-09 ***
a16 31.226 0.886 35.26 < 2e-16 ***
a17 31.230 0.821 38.02 < 2e-16 ***
a18 19.998 1.011 19.78 3.6e-13 ***
a19 37.095 1.071 34.65 < 2e-16 ***
a20 32.594 1.121 29.07 6.2e-16 ***
a21 30.376 1.057 28.74 7.5e-16 ***
b1 -27.300 6.873 -3.97 0.00099 ***
b2 -26.270 6.754 -3.89 0.00118 **
b3 -30.901 2.270 -13.61 1.4e-10 ***
b4 -32.238 3.810 -8.46 1.7e-07 ***
b5 -29.941 3.773 -7.94 4.1e-07 ***
b6 -20.622 3.647 -5.65 2.9e-05 ***
b7 -19.625 8.085 -2.43 0.02661 *
b8 -45.780 4.113 -11.13 3.2e-09 ***
b9 -31.345 6.352 -4.93 0.00013 ***
b10 -38.599 3.955 -9.76 2.2e-08 ***
b11 -33.921 3.839 -8.84 9.2e-08 ***
b12 -38.268 8.992 -4.26 0.00053 ***
b13 -22.568 8.194 -2.75 0.01355 *
b14 -36.167 6.358 -5.69 2.7e-05 ***
b15 -32.952 6.354 -5.19 7.4e-05 ***
b16 -47.207 9.540 -4.95 0.00012 ***
b17 -33.875 7.688 -4.41 0.00039 ***
b18 -15.896 6.222 -2.55 0.02051 *
b19 -28.969 7.235 -4.00 0.00092 ***
b20 -36.917 8.033 -4.60 0.00026 ***
b21 -26.508 7.012 -3.78 0.00149 **
th 0.797 0.127 6.30 8.0e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.11 on 17 degrees of freedom
Number of iterations to convergence: 8
Achieved convergence tolerance: 2.17e-06
> options(od)
>
> # princomp.Rd
> ## Robust:
> (pc.rob <- princomp(stackloss, covmat = MASS::cov.rob(stackloss)))
Call:
princomp(x = stackloss, covmat = MASS::cov.rob(stackloss))
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4
7.8322873 4.0077676 1.9114016 0.7624211
4 variables and 21 observations.
>
> # termplot.R
> library(MASS)
> hills.lm <- lm(log(time) ~ log(climb)+log(dist), data = hills)
> termplot(hills.lm, partial.resid = TRUE, smooth = panel.smooth,
+ terms = "log(dist)", main = "Original")
> termplot(hills.lm, transform.x = TRUE,
+ partial.resid = TRUE, smooth = panel.smooth,
+ terms = "log(dist)", main = "Transformed")
>
> # xtabs.Rd
> if(require("Matrix")) {
+ ## similar to "nlme"s 'ergoStool' :
+ d.ergo <- data.frame(Type = paste0("T", rep(1:4, 9*4)),
+ Subj = gl(9, 4, 36*4))
+ print(xtabs(~ Type + Subj, data = d.ergo)) # 4 replicates each
+ set.seed(15) # a subset of cases:
+ print(xtabs(~ Type + Subj, data = d.ergo[sample(36, 10), ], sparse = TRUE))
+
+ ## Hypothetical two-level setup:
+ inner <- factor(sample(letters[1:25], 100, replace = TRUE))
+ inout <- factor(sample(LETTERS[1:5], 25, replace = TRUE))
+ fr <- data.frame(inner = inner, outer = inout[as.integer(inner)])
+ print(xtabs(~ inner + outer, fr, sparse = TRUE))
+ }
Loading required package: Matrix
Subj
Type 1 2 3 4 5 6 7 8 9
T1 4 4 4 4 4 4 4 4 4
T2 4 4 4 4 4 4 4 4 4
T3 4 4 4 4 4 4 4 4 4
T4 4 4 4 4 4 4 4 4 4
4 x 9 sparse Matrix of class "dgCMatrix"
1 2 3 4 5 6 7 8 9
T1 . 1 . 1 . 1 . 1 .
T2 1 . . . . . 1 . 1
T3 . . . . 1 . . . .
T4 1 . . . . . 1 . .
25 x 5 sparse Matrix of class "dgCMatrix"
A B C D E
a 2 . . . .
b . . 1 . .
c . 6 . . .
d . . . 5 .
e . . . 3 .
f 1 . . . .
g . 9 . . .
h . . 3 . .
i . . . . 5
j . . . 1 .
k 3 . . . .
l . 2 . . .
m 6 . . . .
n . . 1 . .
o 2 . . . .
p . . 2 . .
q . 5 . . .
r . . . . 6
s . . 4 . .
t . . . 7 .
u . 4 . . .
v . . . 7 .
w . . . 7 .
x . . . . 6
y . . . . 2
>
> ## From utils
> example(packageDescription)
pckgDs> ## No test:
pckgDs> ##D packageDescription("stats")
pckgDs> ##D packageDescription("stats", fields = c("Package", "Version"))
pckgDs> ##D
pckgDs> ##D packageDescription("stats", fields = "Version")
pckgDs> ##D packageDescription("stats", fields = "Version", drop = FALSE)
pckgDs> ##D
pckgDs> ##D if(packageVersion("MASS") < "7.3.29")
pckgDs> ##D message("you need to update 'MASS'")
pckgDs> ## End(No test)
pckgDs>
pckgDs>
>
>
> ## From splines
> library(splines)
> Matrix::drop0(zapsmall(6*splineDesign(knots = 1:40, x = 4:37, sparse = TRUE)))
34 x 36 sparse Matrix of class "dgCMatrix"
[1,] 1 4 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[2,] . 1 4 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[3,] . . 1 4 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[4,] . . . 1 4 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[5,] . . . . 1 4 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[6,] . . . . . 1 4 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[7,] . . . . . . 1 4 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
[8,] . . . . . . . 1 4 1 . . . . . . . . . . . . . . . . . . . . . . . . . .
[9,] . . . . . . . . 1 4 1 . . . . . . . . . . . . . . . . . . . . . . . . .
[10,] . . . . . . . . . 1 4 1 . . . . . . . . . . . . . . . . . . . . . . . .
[11,] . . . . . . . . . . 1 4 1 . . . . . . . . . . . . . . . . . . . . . . .
[12,] . . . . . . . . . . . 1 4 1 . . . . . . . . . . . . . . . . . . . . . .
[13,] . . . . . . . . . . . . 1 4 1 . . . . . . . . . . . . . . . . . . . . .
[14,] . . . . . . . . . . . . . 1 4 1 . . . . . . . . . . . . . . . . . . . .
[15,] . . . . . . . . . . . . . . 1 4 1 . . . . . . . . . . . . . . . . . . .
[16,] . . . . . . . . . . . . . . . 1 4 1 . . . . . . . . . . . . . . . . . .
[17,] . . . . . . . . . . . . . . . . 1 4 1 . . . . . . . . . . . . . . . . .
[18,] . . . . . . . . . . . . . . . . . 1 4 1 . . . . . . . . . . . . . . . .
[19,] . . . . . . . . . . . . . . . . . . 1 4 1 . . . . . . . . . . . . . . .
[20,] . . . . . . . . . . . . . . . . . . . 1 4 1 . . . . . . . . . . . . . .
[21,] . . . . . . . . . . . . . . . . . . . . 1 4 1 . . . . . . . . . . . . .
[22,] . . . . . . . . . . . . . . . . . . . . . 1 4 1 . . . . . . . . . . . .
[23,] . . . . . . . . . . . . . . . . . . . . . . 1 4 1 . . . . . . . . . . .
[24,] . . . . . . . . . . . . . . . . . . . . . . . 1 4 1 . . . . . . . . . .
[25,] . . . . . . . . . . . . . . . . . . . . . . . . 1 4 1 . . . . . . . . .
[26,] . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 1 . . . . . . . .
[27,] . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 1 . . . . . . .
[28,] . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 1 . . . . . .
[29,] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 1 . . . . .
[30,] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 1 . . . .
[31,] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 1 . . .
[32,] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 1 . .
[33,] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 1 .
[34,] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 1
>
>
> ## From tools
>
> library(tools)
> ## there are few dependencies in a vanilla R installation:
> ## lattice may not be installed
> ## Avoid possibly large list from R_HOME/site-library, which --vanilla includes.
> dependsOnPkgs("lattice", lib.loc = .Library)
[1] "Matrix" "nlme" "mgcv" "survival"
>
> ## This may not be installed
> gridEx <- system.file("doc", "grid.Rnw", package = "grid")
> vignetteDepends(gridEx)
$Depends
[1] "lattice"
$Installed
[1] "lattice"
$Found
list()
$NotFound
character(0)
$R
[1] "R (>= 3.0.0)"
attr(,"class")
[1] "DependsList"
Warning messages:
1: 'getDepList' is deprecated.
Use 'dependsOnPkgs() or package_dependencies()' instead.
See help("Deprecated")
2: 'package.dependencies' is deprecated.
Use 'package_dependencies' instead.
See help("Deprecated")
>