Skip to content

Latest commit

 

History

History
36 lines (25 loc) · 1.08 KB

README.md

File metadata and controls

36 lines (25 loc) · 1.08 KB

Speeder: Accelerated ImageNet with Ray

Data Pipeline Parallelism (DPP)

Speeder uses RayData to do distributed data preprocessing on the CPU at training time with data prefetching

Distributed Data Parallelism (DDP)

Speeder uses RayTrain to do distributed data parallelism to train models on multiple GPUs at once

Fast Hyperparameter Tuning

Speeder uses RayTune to do intelligent hyperparameter sweeps in parallel

Quickstart

conda env create -y -n speeder -f env.yaml
conda activate speeder
pip install ffcv --no-cache-dir
python speeder/train.py

You can modify parameters directly in configs/train_cfg.yaml

For launching runs, you can specify a parameter override path to override select defaults like so:

python speeder/train.py overrides=<path_to_your_overrides_yaml>

See the overrides directory for examples

WandB

  1. Make a .env from .env.template and add your WandB API key

  2. Group by group and job_type in the WandB dashboard to properly organize

    • The organization hierarchy is experiment -> run -> trial