diff --git a/docs/source/get_started/index.rst b/docs/source/get_started/index.rst
index b678634e..ab0956aa 100644
--- a/docs/source/get_started/index.rst
+++ b/docs/source/get_started/index.rst
@@ -6,12 +6,9 @@ Here is the content of our documentation project.
.. toctree::
- :maxdepth: 2
- :caption: Get Started
+ :maxdepth: 1
+ :caption: Contents:
installation
- .. adalflow_in_15mins
-
- community
-
-.. lightrag_in_10_mins
+ integrations
+ quickstart
diff --git a/docs/source/get_started/integrations.rst b/docs/source/get_started/integrations.rst
new file mode 100644
index 00000000..dbf86084
--- /dev/null
+++ b/docs/source/get_started/integrations.rst
@@ -0,0 +1,170 @@
+.. _get_started-integrations:
+
+Integrations
+===========
+
+AdalFlow integrates with many popular AI and database platforms to provide a comprehensive solution for your LLM applications.
+
+Model Providers
+-------------
+
+AdalFlow supports a wide range of model providers, each offering unique capabilities and models:
+
+.. raw:: html
+
+
+
+- **Azure OpenAI**: Deploy OpenAI models in Azure's secure cloud environment with enterprise features.
+- **Amazon Bedrock**: Access foundation models from various providers through AWS's managed service.
+- **Groq**: High-performance inference platform with ultra-low latency for LLM operations.
+- **Ollama**: Run and manage open-source LLMs locally with easy setup and deployment.
+- **Transformers**: Direct integration with Hugging Face's transformers library for local model inference.
+- **Deepseek**: Advanced language models optimized for coding and technical tasks.
+- **OpenAI**: State-of-the-art models including GPT-4 and DALL-E for various AI tasks.
+- **Anthropic**: Access to Claude models known for their strong reasoning capabilities.
+
+Vector Databases
+--------------
+
+.. raw:: html
+
+
+
+Embedding and Reranking Models
+---------------------------
+
+.. raw:: html
+
+
+
+.. raw:: html
+
+
+
+Usage Examples
+------------
+
+Have a look at our comprehensive :ref:`tutorials ` featuring all of these integrations, including:
+
+- Model Clients and LLM Integration
+- Vector Databases and RAG
+- Embeddings and Reranking
+- Agent Development
+- Evaluation and Optimization
+- Logging and Tracing
+
+Each tutorial provides practical examples and best practices for building production-ready LLM applications.
diff --git a/docs/source/index.rst b/docs/source/index.rst
index 5f265357..ff512d54 100644
--- a/docs/source/index.rst
+++ b/docs/source/index.rst
@@ -1,4 +1,3 @@
-
.. image:: https://raw.githubusercontent.com/SylphAI-Inc/LightRAG/main/docs/source/_static/images/adalflow-logo.png
:width: 100%
:alt: Adalflow Logo
@@ -295,6 +294,7 @@ We are building a library that unites the two worlds, forming a healthy LLM appl
:hidden:
get_started/index
+ get_started/integrations
diff --git a/docs/source/tutorials/index.rst b/docs/source/tutorials/index.rst
index 4985f92b..754d0217 100644
--- a/docs/source/tutorials/index.rst
+++ b/docs/source/tutorials/index.rst
@@ -166,6 +166,8 @@ Putting it all together
- Description
* - :doc:`rag_playbook`
- Comprehensive RAG playbook according to the sota research and the best practices in the industry.
+ * - :doc:`rag_with_memory`
+ - Building RAG systems with conversation memory for enhanced context retention and follow-up handling.
.. toctree::
@@ -182,6 +184,7 @@ Putting it all together
text_splitter
db
rag_playbook
+ rag_with_memory
diff --git a/docs/source/tutorials/rag_with_memory.rst b/docs/source/tutorials/rag_with_memory.rst
new file mode 100644
index 00000000..6739898f
--- /dev/null
+++ b/docs/source/tutorials/rag_with_memory.rst
@@ -0,0 +1,120 @@
+.. _tutorials-rag_with_memory:
+
+RAG with Memory
+==============
+
+This guide demonstrates how to implement a RAG system with conversation memory using AdalFlow, based on our `github_chat `_ reference implementation.
+
+Overview
+--------
+
+The github_chat project is a practical RAG implementation that allows you to chat with GitHub repositories while maintaining conversation context. It demonstrates:
+
+- Code-aware responses using RAG
+- Memory management for conversation context
+- Support for multiple programming languages
+- Both web and command-line interfaces
+
+Architecture
+-----------
+
+The system is built with several key components:
+
+Data Pipeline
+^^^^^^^^^^^^
+
+.. code-block:: text
+
+ Input Documents → Text Splitter → Embedder → Vector Database
+
+The data pipeline processes repository content through:
+
+1. Document reading and preprocessing
+2. Text splitting for optimal chunk sizes
+3. Embedding generation
+4. Storage in vector database
+
+RAG System
+^^^^^^^^^^
+
+.. code-block:: text
+
+ User Query → RAG Component → [FAISS Retriever, Generator, Memory]
+ ↓
+ Response
+
+The RAG system includes:
+
+- FAISS-based retrieval for efficient similarity search
+- LLM-based response generation
+- Memory component for conversation history
+
+Memory Management
+---------------
+
+The memory system maintains conversation context through:
+
+1. Dialog turn tracking
+2. Context preservation
+3. Dynamic memory updates
+
+This enables:
+
+- Follow-up questions
+- Reference to previous context
+- More coherent conversations
+
+Quick Start
+----------
+
+1. Installation:
+
+.. code-block:: bash
+
+ git clone https://github.com/SylphAI-Inc/github_chat
+ cd github_chat
+ poetry install
+
+2. Set up your OpenAI API key:
+
+.. code-block:: bash
+
+ mkdir -p .streamlit
+ echo 'OPENAI_API_KEY = "your-key-here"' > .streamlit/secrets.toml
+
+3. Run the application:
+
+.. code-block:: bash
+
+ # Web interface
+ poetry run streamlit run app.py
+
+ # Repository analysis
+ poetry run streamlit run app_repo.py
+
+Example Usage
+-----------
+
+1. **Demo Version (app.py)**
+ - Ask about Alice (software engineer)
+ - Ask about Bob (data scientist)
+ - Ask about the company cafeteria
+ - Test memory with follow-up questions
+
+2. **Repository Analysis (app_repo.py)**
+ - Enter your repository path
+ - Click "Load Repository"
+ - Ask questions about classes, functions, or code structure
+ - View implementation details in expandable sections
+
+Implementation Details
+-------------------
+
+The system uses AdalFlow's components:
+
+- :class:`core.embedder.Embedder` for document embedding
+- :class:`core.retriever.Retriever` for similarity search
+- :class:`core.generator.Generator` for response generation
+- Custom memory management for conversation tracking
+
+For detailed implementation examples, check out the `github_chat repository `_.