-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathmain_std_example.py
135 lines (107 loc) · 6.77 KB
/
main_std_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import sys
import os
# -- Limit number of OPENBLAS library threads --
# On linux based operation systems, we observed a occupation of all cores by the underlying openblas library. Often,
# this slowed down other processes, as well as the planner itself. Therefore, it is recommended to set the number of
# threads to one. Note: this import must happen before the import of any openblas based package (e.g. numpy)
os.environ['OPENBLAS_NUM_THREADS'] = str(1)
import numpy as np
import datetime
import json
import time
import configparser
import graph_ltpl
"""
This is the main script to run a standard example of the graph-based local trajectory planner.
:Authors:
* Tim Stahl <[email protected]>
:Created on:
18.08.2020
"""
# ----------------------------------------------------------------------------------------------------------------------
# IMPORT (should not change) -------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
# top level path (module directory)
toppath = os.path.dirname(os.path.realpath(__file__))
sys.path.append(toppath)
track_param = configparser.ConfigParser()
if not track_param.read(toppath + "/params/driving_task.ini"):
raise ValueError('Specified online parameter config file does not exist or is empty!')
track_specifier = json.loads(track_param.get('DRIVING_TASK', 'track'))
# define all relevant paths
path_dict = {'globtraj_input_path': toppath + "/inputs/traj_ltpl_cl/traj_ltpl_cl_" + track_specifier + ".csv",
'graph_store_path': toppath + "/inputs/stored_graph.pckl",
'ltpl_offline_param_path': toppath + "/params/ltpl_config_offline.ini",
'ltpl_online_param_path': toppath + "/params/ltpl_config_online.ini",
'log_path': toppath + "/logs/graph_ltpl/",
'graph_log_id': datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S")
}
# ----------------------------------------------------------------------------------------------------------------------
# INITIALIZATION AND OFFLINE PART --------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
# intialize graph_ltpl-class
ltpl_obj = graph_ltpl.Graph_LTPL.Graph_LTPL(path_dict=path_dict,
visual_mode=True,
log_to_file=True)
# calculate offline graph
ltpl_obj.graph_init()
# set start pose based on first point in provided reference-line
refline = graph_ltpl.imp_global_traj.src.import_globtraj_csv.\
import_globtraj_csv(import_path=path_dict['globtraj_input_path'])[0]
pos_est = refline[0, :]
heading_est = np.arctan2(np.diff(refline[0:2, 1]), np.diff(refline[0:2, 0])) - np.pi / 2
vel_est = 0.0
# set start pos
ltpl_obj.set_startpos(pos_est=pos_est,
heading_est=heading_est)
# ----------------------------------------------------------------------------------------------------------------------
# ONLINE LOOP ----------------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
# init dummy object list
obj_list_dummy = graph_ltpl.testing_tools.src.objectlist_dummy.ObjectlistDummy(dynamic=True,
vel_scale=0.3,
s0=250.0)
# init sample zone (NOTE: only valid with the default track and configuration!)
# INFO: Zones can be used to temporarily block certain regions (e.g. pit lane, accident region, dirty track, ....).
# Each zone is specified in a as a dict entry, where the key is the zone ID and the value is a list with the cells
# * blocked layer numbers (in the graph) - pairwise with blocked node numbers
# * blocked node numbers (in the graph) - pairwise with blocked layer numbers
# * numpy array holding coordinates of left bound of region (columns x and y)
# * numpy array holding coordinates of right bound of region (columns x and y)
zone_example = {'sample_zone': [[64, 64, 64, 64, 64, 64, 64, 65, 65, 65, 65, 65, 65, 65, 66, 66, 66, 66, 66, 66, 66],
[0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6],
np.array([[-20.54, 227.56], [23.80, 186.64]]),
np.array([[-23.80, 224.06], [20.17, 183.60]])]}
traj_set = {'straight': None}
tic = time.time()
while True:
# -- SELECT ONE OF THE PROVIDED TRAJECTORIES -----------------------------------------------------------------------
# (here: brute-force, replace by sophisticated behavior planner)
for sel_action in ["right", "left", "straight", "follow"]: # try to force 'right', else try next in list
if sel_action in traj_set.keys():
break
# get simple object list (one vehicle driving around the track)
obj_list = obj_list_dummy.get_objectlist()
# -- CALCULATE PATHS FOR NEXT TIMESTAMP ----------------------------------------------------------------------------
ltpl_obj.calc_paths(prev_action_id=sel_action,
object_list=obj_list,
blocked_zones=zone_example)
# -- GET POSITION AND VELOCITY ESTIMATE OF EGO-VEHICLE -------------------------------------------------------------
# (here: simulation dummy, replace with actual sensor readings)
if traj_set[sel_action] is not None:
pos_est, vel_est = graph_ltpl.testing_tools.src.vdc_dummy.\
vdc_dummy(pos_est=pos_est,
last_s_course=(traj_set[sel_action][0][:, 0]),
last_path=(traj_set[sel_action][0][:, 1:3]),
last_vel_course=(traj_set[sel_action][0][:, 5]),
iter_time=time.time() - tic)
tic = time.time()
# -- CALCULATE VELOCITY PROFILE AND RETRIEVE TRAJECTORIES ----------------------------------------------------------
traj_set = ltpl_obj.calc_vel_profile(pos_est=pos_est,
vel_est=vel_est)[0]
# -- SEND TRAJECTORIES TO CONTROLLER -------------------------------------------------------------------------------
# select a trajectory from the set and send it to the controller here
# -- LOGGING -------------------------------------------------------------------------------------------------------
ltpl_obj.log()
# -- LIVE PLOT (if activated - not recommended for performance use) ------------------------------------------------
ltpl_obj.visual()