-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathexporter.py
35 lines (28 loc) · 1.19 KB
/
exporter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
from PIL import Image
from torchvision import transforms
import network
model = network.deeplabv3plus_resnet50(num_classes=2, output_stride=16)
model.load_state_dict((torch.load('checkpoints/best_deeplabv3plus_resnet50_voc_os16.pth'))["model_state"])
model.eval()
input_image = Image.open('datasets/data/CameraBase/VOCdevkit/VOC2012/JPEGImages/0001-0019.jpg')
input_image = input_image.convert("RGB")
mytransform = transforms.Compose([
transforms.Resize([416, 416]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = mytransform(input_image)
input_batch = input_tensor.unsqueeze(0)
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
output = model(input_batch)
print(output.shape)
# NOK (swimtransformer), OK (mobilenet, resnet50)
torch_onnx_out = torch.onnx.export(model, input_batch, 'checkpoints/best_deeplabv3plus_resnet50_voc_os16.onnx',
export_params=True,
verbose=True,
input_names=['input'],
output_names=["output"],
opset_version=11)