-
Notifications
You must be signed in to change notification settings - Fork 70
/
dataLoader.py
executable file
·143 lines (130 loc) · 6.25 KB
/
dataLoader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os, torch, numpy, cv2, random, glob, python_speech_features
from scipy.io import wavfile
from torchvision.transforms import RandomCrop
def generate_audio_set(dataPath, batchList):
audioSet = {}
for line in batchList:
data = line.split('\t')
videoName = data[0][:11]
dataName = data[0]
_, audio = wavfile.read(os.path.join(dataPath, videoName, dataName + '.wav'))
audioSet[dataName] = audio
return audioSet
def overlap(dataName, audio, audioSet):
noiseName = random.sample(set(list(audioSet.keys())) - {dataName}, 1)[0]
noiseAudio = audioSet[noiseName]
snr = [random.uniform(-5, 5)]
if len(noiseAudio) < len(audio):
shortage = len(audio) - len(noiseAudio)
noiseAudio = numpy.pad(noiseAudio, (0, shortage), 'wrap')
else:
noiseAudio = noiseAudio[:len(audio)]
noiseDB = 10 * numpy.log10(numpy.mean(abs(noiseAudio ** 2)) + 1e-4)
cleanDB = 10 * numpy.log10(numpy.mean(abs(audio ** 2)) + 1e-4)
noiseAudio = numpy.sqrt(10 ** ((cleanDB - noiseDB - snr) / 10)) * noiseAudio
audio = audio + noiseAudio
return audio.astype(numpy.int16)
def load_audio(data, dataPath, numFrames, audioAug, audioSet = None):
dataName = data[0]
fps = float(data[2])
audio = audioSet[dataName]
if audioAug == True:
augType = random.randint(0,1)
if augType == 1:
audio = overlap(dataName, audio, audioSet)
else:
audio = audio
# fps is not always 25, in order to align the visual, we modify the window and step in MFCC extraction process based on fps
audio = python_speech_features.mfcc(audio, 16000, numcep = 13, winlen = 0.025 * 25 / fps, winstep = 0.010 * 25 / fps)
maxAudio = int(numFrames * 4)
if audio.shape[0] < maxAudio:
shortage = maxAudio - audio.shape[0]
audio = numpy.pad(audio, ((0, shortage), (0,0)), 'wrap')
audio = audio[:int(round(numFrames * 4)),:]
return audio
def load_visual(data, dataPath, numFrames, visualAug):
dataName = data[0]
videoName = data[0][:11]
faceFolderPath = os.path.join(dataPath, videoName, dataName)
faceFiles = glob.glob("%s/*.jpg"%faceFolderPath)
sortedFaceFiles = sorted(faceFiles, key=lambda data: (float(data.split('/')[-1][:-4])), reverse=False)
faces = []
H = 112
if visualAug == True:
new = int(H*random.uniform(0.7, 1))
x, y = numpy.random.randint(0, H - new), numpy.random.randint(0, H - new)
M = cv2.getRotationMatrix2D((H/2,H/2), random.uniform(-15, 15), 1)
augType = random.choice(['orig', 'flip', 'crop', 'rotate'])
else:
augType = 'orig'
for faceFile in sortedFaceFiles[:numFrames]:
face = cv2.imread(faceFile)
face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
face = cv2.resize(face, (H,H))
if augType == 'orig':
faces.append(face)
elif augType == 'flip':
faces.append(cv2.flip(face, 1))
elif augType == 'crop':
faces.append(cv2.resize(face[y:y+new, x:x+new] , (H,H)))
elif augType == 'rotate':
faces.append(cv2.warpAffine(face, M, (H,H)))
faces = numpy.array(faces)
return faces
def load_label(data, numFrames):
res = []
labels = data[3].replace('[', '').replace(']', '')
labels = labels.split(',')
for label in labels:
res.append(int(label))
res = numpy.array(res[:numFrames])
return res
class train_loader(object):
def __init__(self, trialFileName, audioPath, visualPath, batchSize, **kwargs):
self.audioPath = audioPath
self.visualPath = visualPath
self.miniBatch = []
mixLst = open(trialFileName).read().splitlines()
# sort the training set by the length of the videos, shuffle them to make more videos in the same batch belong to different movies
sortedMixLst = sorted(mixLst, key=lambda data: (int(data.split('\t')[1]), int(data.split('\t')[-1])), reverse=True)
start = 0
while True:
length = int(sortedMixLst[start].split('\t')[1])
end = min(len(sortedMixLst), start + max(int(batchSize / length), 1))
self.miniBatch.append(sortedMixLst[start:end])
if end == len(sortedMixLst):
break
start = end
def __getitem__(self, index):
batchList = self.miniBatch[index]
numFrames = int(batchList[-1].split('\t')[1])
audioFeatures, visualFeatures, labels = [], [], []
audioSet = generate_audio_set(self.audioPath, batchList) # load the audios in this batch to do augmentation
for line in batchList:
data = line.split('\t')
audioFeatures.append(load_audio(data, self.audioPath, numFrames, audioAug = True, audioSet = audioSet))
visualFeatures.append(load_visual(data, self.visualPath,numFrames, visualAug = True))
labels.append(load_label(data, numFrames))
return torch.FloatTensor(numpy.array(audioFeatures)), \
torch.FloatTensor(numpy.array(visualFeatures)), \
torch.LongTensor(numpy.array(labels))
def __len__(self):
return len(self.miniBatch)
class val_loader(object):
def __init__(self, trialFileName, audioPath, visualPath, **kwargs):
self.audioPath = audioPath
self.visualPath = visualPath
self.miniBatch = open(trialFileName).read().splitlines()
def __getitem__(self, index):
line = [self.miniBatch[index]]
numFrames = int(line[0].split('\t')[1])
audioSet = generate_audio_set(self.audioPath, line)
data = line[0].split('\t')
audioFeatures = [load_audio(data, self.audioPath, numFrames, audioAug = False, audioSet = audioSet)]
visualFeatures = [load_visual(data, self.visualPath,numFrames, visualAug = False)]
labels = [load_label(data, numFrames)]
return torch.FloatTensor(numpy.array(audioFeatures)), \
torch.FloatTensor(numpy.array(visualFeatures)), \
torch.LongTensor(numpy.array(labels))
def __len__(self):
return len(self.miniBatch)