forked from motokimura/capsnet_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
executable file
·307 lines (236 loc) · 9.56 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#
# Dynamic Routing Between Capsules
# https://arxiv.org/pdf/1710.09829.pdf
#
from __future__ import print_function
import argparse
import math
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torchvision import datasets, transforms
import torchvision.utils as vutils
import torch.nn.functional as F
from capsule_network import CapsuleNetwork
# Get training parameter settings.
parser = argparse.ArgumentParser(description='CapsNet for MNIST')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--test-batch-size', type=int, default=128, metavar='N',
help='input batch size for testing (default: 128)')
parser.add_argument('--epochs', type=int, default=100, metavar='N',
help='number of epochs to train (default: 100)')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--lr-decay-factor', type=float, default=0.9, metavar='DF',
help='factor to decay learning rate (default: 0.9)')
parser.add_argument('--lr-decay-epoch', type=int, default=1, metavar='DE',
help='how many epochs to wait before decaying learning rate (default: 1)')
parser.add_argument('--routing', type=int, default=3, metavar='R',
help='iteration numbers for dymanic routing b/w capsules (default: 3)')
parser.add_argument('--no-reconstruct', dest='reconstruct', action='store_false',
help='Disable reconstruction loss (default: False)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--tb-log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before saving training status to TensorBoard (default: 10)')
parser.add_argument('--tb-image-interval', type=int, default=100, metavar='N',
help='how many batches to wait before saving reconstructed images to TensorBoard (default: 100)')
parser.add_argument('--log-dir', '-o', default=None, metavar='LD',
help='directory under `runs` to output TensorBoard event file, reconstructed.png, and original.png (default: <DATETIME>)')
parser.add_argument('--gpu', type=int, default=0, metavar='G',
help='id of the GPU to use (default: 0)')
parser.add_argument('--dataset', type=str, default='mnist', metavar='D',
help='name of the Dataset to use (default: mnist)')
args = parser.parse_args()
# Check CUDA availability.
if args.gpu >= 0:
assert torch.cuda.is_available(), \
'Aborted. CUDA does not seem to be available. Use `--gpu -1` option to train with CPUs.'
# Setup TensorBoardX summary writer.
from tensorboardX import SummaryWriter
from datetime import datetime
import os
log_dir = args.log_dir if (args.log_dir is not None) else datetime.now().strftime('%b%d_%H-%M-%S')
log_dir = os.path.join('runs', log_dir)
writer = SummaryWriter(log_dir=log_dir)
# Initialize the random seed.
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# Setup data loaders for train/test data.
if args.dataset == 'cifar10':
channels=3
image_width=32
image_height=32
train_dataset = datasets.CIFAR10(
'data', train=True, download=True,
transform=transforms.Compose([
transforms.RandomCrop(padding=4, size=(image_width, image_height)), # data augmentation
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
)
test_dataset = datasets.CIFAR10(
'data', train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
)
else:
channels=1
image_width=28
image_height=28
train_dataset = datasets.MNIST(
'data', train=True, download=True,
transform=transforms.Compose([
transforms.RandomCrop(padding=2, size=(image_width, image_height)), # data augmentation
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
)
test_dataset = datasets.MNIST(
'data', train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
)
primary_capsules=32 * ((math.floor(((image_width - 17) / 2)) + 1) ** 2)
kwargs = {'num_workers': 1, 'pin_memory': True} if (args.gpu >= 0) else {}
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True,
**kwargs
)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.test_batch_size,
shuffle=True,
**kwargs
)
# Build CapsNet.
model = CapsuleNetwork(routing_iters=args.routing, reconstruct=args.reconstruct, gpu=args.gpu, channels=channels, image_width=image_width, image_height=image_height, primary_capsules=primary_capsules)
if args.gpu >=0:
model = model.cuda(args.gpu)
print(model)
# Setup optimizer.
optimizer = optim.Adam(model.parameters(), lr=args.lr)
if args.reconstruct:
# Get some random test images for reconstruction testing.
test_iter = iter(test_loader)
reconstruction_samples, _ = test_iter.next()
vutils.save_image(reconstruction_samples, os.path.join(log_dir, 'original.png'), normalize=True)
writer.add_image('original', vutils.make_grid(reconstruction_samples, normalize=True))
reconstruction_samples = Variable(reconstruction_samples)
if args.gpu >= 0:
reconstruction_samples = reconstruction_samples.cuda(args.gpu)
# Function to reconstruct the test images.
def reconstruct_test_images():
model.eval()
with torch.no_grad():
output = model(reconstruction_samples)
reconstructed = model.reconstruct(output)
reconstructed = reconstructed.data.cpu()
return reconstructed
# Function to convert batches of class indices to classes of one-hot vectors.
def to_one_hot(x, length=10):
batch_size = x.size(0)
x_one_hot = torch.zeros(batch_size, length)
for i in range(batch_size):
x_one_hot[i, x[i]] = 1.0
return x_one_hot
# Function to get learning rates from the optimizer.
def get_lr():
lr_params = []
for param_group in optimizer.param_groups:
lr_params.append(param_group['lr'])
return lr_params
# Function to decay learning rate.
def decay_lr(epoch):
if epoch % args.lr_decay_epoch != (args.lr_decay_epoch - 1):
return
for param_group in optimizer.param_groups:
param_group['lr'] *= args.lr_decay_factor
# Function for training.
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
target_one_hot = to_one_hot(target)
data, target = Variable(data), Variable(target_one_hot)
if args.gpu >= 0:
data, target = data.cuda(args.gpu), target.cuda(args.gpu)
optimizer.zero_grad()
output = model(data) # forward.
loss, margin_loss, reconstruction_loss = model.loss(data, output, target)
loss.backward()
optimizer.step()
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * args.batch_size, len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item() )
)
if args.reconstruct:
reconstructed = reconstruct_test_images()
vutils.save_image(reconstructed, os.path.join(log_dir, 'reconstructed.png'), normalize=True)
n_iter = epoch * len(train_loader) + batch_idx
if n_iter % args.tb_log_interval == 0:
# Log train/loss to TensorBoard.
writer.add_scalar('train/loss', loss.item(), n_iter)
writer.add_scalar('train/loss_margin', margin_loss.item(), n_iter)
if args.reconstruct:
writer.add_scalar('train/loss_reconstruction', reconstruction_loss.item(), n_iter)
# Log base learning rate to TensorBoard.
lr = get_lr()[0]
writer.add_scalar('lr', lr, n_iter)
if args.reconstruct and (n_iter % args.tb_image_interval == 0):
# Log reconstructed test images to TensorBoard.
writer.add_image(
'reconstructed/iter_{}'.format(n_iter),
vutils.make_grid(reconstructed, normalize=True)
)
decay_lr(epoch)
# Function for testing.
def test(epoch):
model.eval()
test_loss, test_margin_loss, test_rec_loss = 0., 0., 0.
correct = 0
for data, target in test_loader:
target_indices = target
target_one_hot = to_one_hot(target_indices)
data, target = Variable(data), Variable(target_one_hot)
if args.gpu >= 0:
data, target = data.cuda(args.gpu), target.cuda(args.gpu)
with torch.no_grad():
output = model(data)
# Sum up batch loss by `size_average=False`, later being averaged over all test samples.
loss, margin_loss, reconstruction_loss = model.loss(data, output, target, size_average=False)
loss, margin_loss, reconstruction_loss = loss.item(), margin_loss.item(), reconstruction_loss.item()
test_loss += loss
test_margin_loss += margin_loss
test_rec_loss += reconstruction_loss
v_mag = torch.sqrt((output**2).sum(dim=2, keepdim=True))
pred = v_mag.data.max(1, keepdim=True)[1].cpu()
correct += pred.eq(target_indices.view_as(pred)).sum()
# Average over all test samples.
test_loss /= len(test_loader.dataset)
test_margin_loss /= len(test_loader.dataset)
test_rec_loss /= len(test_loader.dataset)
test_accuracy = 100. * float(correct) / float(len(test_loader.dataset))
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
test_loss, correct, len(test_loader.dataset), test_accuracy )
)
# Log test/loss and test/accuracy to TensorBoard at every epoch.
n_iter = epoch * len(train_loader)
writer.add_scalar('test/loss', test_loss, n_iter)
writer.add_scalar('test/loss_margin', test_margin_loss, n_iter)
if args.reconstruct:
writer.add_scalar('test/loss_reconstruction', test_rec_loss, n_iter)
writer.add_scalar('test/accuracy', test_accuracy, n_iter)
# Start training.
for epoch in range(args.epochs):
train(epoch)
test(epoch)
# Close TensorBoardX summary writer.
writer.close()