From c83cacf8399cd1918be5fc6c3ef4d0331fcedf88 Mon Sep 17 00:00:00 2001 From: Drew Lewis <30658947+siwelwerd@users.noreply.github.com> Date: Tue, 30 Jul 2024 08:23:14 -0700 Subject: [PATCH] Incorporate Tonya's feedback (#418) * Incorporate Tonya's feedback * Add activity before 1.7.7 for scaffolding * Fix graph * Try to add number line * Should work but doesn't * Add other two numberline tasks * Missing
tag
* Draw number lines manually
---
sage/common.sage | 75 +++++++++++++++++++++
source/01-EQ/07.ptx | 158 ++++++++++++++++++++++++++++++++++++++++----
2 files changed, 219 insertions(+), 14 deletions(-)
create mode 100644 sage/common.sage
diff --git a/sage/common.sage b/sage/common.sage
new file mode 100644
index 00000000..0f24b2dd
--- /dev/null
+++ b/sage/common.sage
@@ -0,0 +1,75 @@
+# Library of helpful functions
+class TBILPrecal:
+ @staticmethod
+ def numberline_plot(center=0, radius=10):
+ P = arrow((center-radius,0),(center+radius,0),color="black", width=1, arrowsize=1, aspect_ratio=1,head=2)
+ for i in range(center-radius+1,center+radius):
+ P += line([(i,-0.2),(i,0.2)],color="black")
+ P += text(f"${i}$", (i,-0.6),color="black")
+ return P
+
+ @staticmethod
+ def inequality_plot(
+ start=None,
+ strict_start=True,
+ end=None,
+ strict_end=True,
+ label_endpoints=True):
+ P = Graphics()
+ if start is None:
+ P += arrow((end,0),(-10,0),color="#0088ff", width=3, arrowsize=3, aspect_ratio=1)
+ if end is None:
+ P += arrow((start,0),(10,0),color="#0088ff", width=3, arrowsize=3, aspect_ratio=1)
+ if start is not None and end is not None:
+ P += line([(start,0),(end,0)],color="#0088ff", thickness=3, aspect_ratio=1)
+
+ if start is not None:
+ if label_endpoints:
+ P += text(f"${round(start,ndigits=2)}$", (start,0.6), color="black")
+ if strict_start:
+ P += text("(", (start,0), color="#0088ff", fontsize=18)
+ else:
+ P += text("[", (start,0), color="#0088ff", fontsize=18)
+
+ if end is not None:
+ if label_endpoints:
+ P += text(f"${round(end,ndigits=2)}$", (end,0.6), color="black")
+ if strict_end:
+ P += text(")", (end,0), color="#0088ff", fontsize=18)
+ else:
+ P += text("]", (end,0), color="#0088ff", fontsize=18)
+ return P
+
+ @staticmethod
+ def small_rationals(numerators=range(-8,9),
+ denominators=[2,3,5],
+ dictionary=True,
+ length=1):
+ '''Generates a list or dictionary of unique rational numbers with small numerators and denominators.
+ For a dictionary, keys are the rationals and values are the denominators.'''
+ fulldict = {m/n:n for m in numerators for n in denominators if m%n !=0}
+ dict= { num:fulldict[num] for num in sample(list(fulldict.keys()),length)}
+ if dictionary:
+ return dict
+ return list(dict.keys())
+
+ @staticmethod
+ def small_irrationals(rational_part=range(-8,9),
+ irrational_part=[2,3,5,6,7,8],
+ denominators=[i for i in range(-5,6) if i != 0],
+ dictionary=True,
+ length=1):
+ '''Generates a list or dictionary of uniqe irrational numbers of the form (a+sqrt(b))/c.
+ For a dictionary, keys are tuples of rationals and their conjugate, and values are the denominators.'''
+ fulldict = { ((a+sqrt(b))/c,(a-sqrt(b))/c):c for a in rational_part for b in irrational_part for c in denominators}
+ dict= { pair:fulldict[pair] for pair in sample(list(fulldict.keys()),length)}
+ if dictionary:
+ return dict
+ else:
+ return list(dict.keys())
+
+ @staticmethod
+ def small_complex(real_part=range(-5,6),
+ imaginary_part=[i for i in range(-5,6) if i != 0],length=1):
+ '''Generates a list of unique 2-tuples of conjugate pairs of complex (not real) numbers of the form a+bi.'''
+ return sample([(a+b*I,a-b*I) for a in real_part for b in imaginary_part],length)
\ No newline at end of file
diff --git a/source/01-EQ/07.ptx b/source/01-EQ/07.ptx
index 4a457ade..79cd3ea2 100644
--- a/source/01-EQ/07.ptx
+++ b/source/01-EQ/07.ptx
@@ -121,23 +121,53 @@
Solve the quadratic inequality algebraically Solve the quadratic inequality algebraically Write your solution using interval notation. D. D. Draw a number line representing your solution. Solve the inequality Solve the inequality Write your solution using interval notation. A. Draw a number line representing your solution.
+ Consider the rational inequality
+ Use a graphing utility to graph the function The graph is below the How does the interval you found in part (a) relate to the numerator and the denominator
+ of the function The places where the numerator or denominator are zero are the potential places where the sign can change. Use a graphing utility to graph the function
+ Use a graphing utility to graph the function The graph is above the How do these values you found in part (b) relate to the numerator and the denominator
+ How does the interval you found in part (b) relate to the numerator and the denominator
of the combined rational function in part (c)?
Factor the numerator. The places where the numerator or denominator vanishes are the potential places where the sign can change. The places where the numerator or denominator are zero are the potential places where the sign can change. How can we express the answers to part (e) for the rational inequality using interval notation? A. B. Draw a number line representing your solution.
-
-