-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaiutils.py
54 lines (46 loc) · 1.85 KB
/
aiutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
import nltk
import joblib
import json
model = joblib.load('./model/my_model_for_healthcare.joblib')
prognosis = json.load(open('./model/prognosis.json'))
VOCAB_DB = [' '.join(x.split()) for x in prognosis]
MAX_NGRAM_LEN = max([len(x.split()) for x in VOCAB_DB])
def vectorize(symptoms):
found_symptoms = [int(x in symptoms) for x in prognosis]
return found_symptoms
def extract_terms(text):
tokens = nltk.word_tokenize(text)
filtered_tokens = [word for word in tokens if word.isalpha()]
vectorizer = CountVectorizer(ngram_range=(1, MAX_NGRAM_LEN), vocabulary=VOCAB_DB)
filtered_str = ' '.join(filtered_tokens)
X = vectorizer.transform([filtered_str])
clf = MultinomialNB()
clf.fit(X, ['health-related'])
prediction = clf.predict(X)
if prediction[0] == 'health-related':
return [term.replace(' ','_') for term in vectorizer.get_feature_names_out() if term in filtered_str]
return []
def diagnosis(data):
et = extract_terms(data)
v = vectorize(et)
print('yd', v)
y_diagnosis = model.predict([v])
y_pred_2 = model.predict_proba([v])
report = {}
report['disease'] = y_diagnosis[:2]
report['confidence'] = y_pred_2.max()*100
return report
# # Sample narrative text
# text = "I've been experiencing high temperature, severe headache, skin rash, and fatigue for the past few days. I also have a high fever."
# # text = input("Enter: ").strip()
# # print(extract_terms(text))
# et = extract_terms(text)
# v = vectorize(et)
# print(et)
# print(v)
# # a = vectorize(['skin_rash','pain_behind_the_eyes', 'back_pain'])
# y_diagnosis = model.predict([v])
# y_pred_2 = model.predict_proba([v])
# print(('Name of the infection = %s , confidence score of : = %s') %(y_diagnosis[0],y_pred_2.max()* 100),'%' )