-
Notifications
You must be signed in to change notification settings - Fork 199
/
Copy pathgpt2_example.py
68 lines (55 loc) · 2.16 KB
/
gpt2_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright (C) 2020 THL A29 Limited, a Tencent company.
# All rights reserved.
# Licensed under the BSD 3-Clause License (the "License"); you may
# not use this file except in compliance with the License. You may
# obtain a copy of the License at
# https://opensource.org/licenses/BSD-3-Clause
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" basis,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
# See the AUTHORS file for names of contributors.
import torch
import transformers
import turbo_transformers
import enum
import time
import numpy
class LoadType(enum.Enum):
PYTORCH = "PYTORCH"
PRETRAINED = "PRETRAINED"
NPZ = "NPZ"
def test(loadtype: LoadType, use_cuda: bool):
cfg = transformers.GPT2Config()
model = transformers.GPT2Model(cfg)
model.eval()
torch.set_grad_enabled(False)
test_device = torch.device('cuda:0') if use_cuda else \
torch.device('cpu:0')
cfg = model.config
# use 4 threads for computing
turbo_transformers.set_num_threads(4)
input_ids = torch.tensor(
([12166, 10699, 16752, 4454], [5342, 16471, 817, 16022]),
dtype=torch.long)
start_time = time.time()
for _ in range(10):
torch_res = model(input_ids)
end_time = time.time()
print("\ntorch time consum: {}".format(end_time - start_time))
# there are three ways to load pretrained model.
if loadtype is LoadType.PYTORCH:
# 1, from a PyTorch model, which has loaded a pretrained model
tt_model = turbo_transformers.GPT2Model.from_torch(model, test_device)
else:
raise ("LoadType is not supported")
start_time = time.time()
for _ in range(10):
res = tt_model(input_ids) # sequence_output, pooled_output
end_time = time.time()
print("\nturbo time consum: {}".format(end_time - start_time))
assert (numpy.max(
numpy.abs(res[0].cpu().numpy() - torch_res[0].cpu().numpy())) < 0.1)
if __name__ == "__main__":
test(LoadType.PYTORCH, use_cuda=False)