-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLottoPredict.py
45 lines (34 loc) · 1.35 KB
/
LottoPredict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers.core import Dense
from keras.layers.recurrent import LSTM
import tensorflow as tf
path = "ontario649.csv"
COLS = [0,1,2,3,4,5,6]
#Load the Datasets
data = pd.read_csv(path,header=0,index_col=0, usecols=COLS)
def _load_data(df, n_prev=100):
docX, docY = [], []
for i in range(len(df) - n_prev):
docX.append(df.iloc[i:i + n_prev].values)
docY.append(df.iloc[i + n_prev].values)
alsX = np.array(docX)
alsY = np.array(docY)
return alsX, alsY
def train_test_split(df, test_size=0.1):
num_train = round(len(df)*(1-test_size))
X_train, y_train = _load_data(df.iloc[0:num_train])
X_test, y_test = _load_data(df.iloc[num_train:])
X_train = np.asarray(X_train).astype(np.float32)
y_train = np.asarray(y_train).astype(np.float32)
return X_train,y_train,X_test,y_test
model = Sequential()
model.add(LSTM(49, input_shape=(None,6)))
model.add(Dense(6, input_dim=49))
model.compile(loss="mse", optimizer="adam")
X_train, y_train, X_test, y_test = train_test_split(data)
model.fit(X_train,y_train, batch_size=450, epochs=10, validation_split=0.05)
predicted = model.predict(X_test)
rmse = np.sqrt(((predicted - y_test) ** 2).mean(axis=0))
print(f"\nPredicted numbers: {np.around(rmse)}")