-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
137 lines (118 loc) · 5.42 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import cv2
import numpy as np
def get_filtered_image(image, action):
img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if action == 'NO_FILTER':
filtered = img
elif action == 'COLORIZED':
filtered = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
elif action == 'GRAYSCALE':
filtered = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
elif action == 'BLURRED':
width, height = img.shape[:2]
if width > 500:
k = (50, 50)
elif width > 200:
k = (25, 25)
else:
k = (10, 10)
blur = cv2.blur(img, k)
filtered = cv2.cvtColor(blur, cv2.COLOR_BGR2RGB)
elif action == "BINARY":
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, filtered = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY)
elif action == 'INVERT':
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, img = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY)
filtered = cv2.bitwise_not(img)
elif action == 'FACE_DETECTION':
img = image
facecascade = cv2.CascadeClassifier("stock/haarcascade_frontalface_default.xml")
eyecascade = cv2.CascadeClassifier("stock/haarcascade_eye.xml")
imggray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = facecascade.detectMultiScale(imggray, 1.6, 4)
for (x, y, w, h) in faces:
cv2.circle(img, (x + w // 2, y + h // 2), h // 2 + 20, (0, 185, 0), 5)
roi_gray = imggray[y:y + h, x:x + w]
roi_color = img[y:y + h, x:x + w]
eyes = eyecascade.detectMultiScale(roi_gray, 1.1, 4)
for (ex, ey, ew, eh) in eyes:
cv2.rectangle(roi_color, (ex, ey), (ex + ew, ey + eh), (0, 0, 255), 2)
filtered = img
elif action == 'CLASSIFICATION':
img = image
classFile = 'stock/classifier/coco.names'
with open(classFile, 'rt') as f:
classNames = f.read().rstrip('\n').split('\n')
configpath = 'stock/classifier/ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
weightspath = 'stock/classifier/frozen_inference_graph.pb'
net = cv2.dnn_DetectionModel(weightspath, configpath)
net.setInputSize(320, 320)
net.setInputScale(1.0 / 127.5)
net.setInputMean((127.5, 127.5, 127.5))
net.setInputSwapRB(True)
classids, confs, bbox = net.detect(img, confThreshold=0.52)
if len(classids) != 0:
for classid, confidence, box in zip(classids.flatten(), confs.flatten(), bbox):
cv2.rectangle(img, box, color=(0, 255, 0), thickness=3)
cv2.putText(img, classNames[classid - 1].upper(), (box[0] + 10, box[1] + 30), cv2.FONT_HERSHEY_TRIPLEX,
1,
(255, 255, 0), 2)
filtered = img
elif action == 'SKETCHED':
img = image
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_invert = cv2.bitwise_not(img_gray)
img_smoothing = cv2.GaussianBlur(img_invert, (21, 21), sigmaX=0, sigmaY=0)
def dodgeV2(x, y):
return cv2.divide(x, 255 - y, scale=256)
final_img = dodgeV2(img_gray, img_smoothing)
filtered = final_img
elif action == "SHAPE":
def getcontours(img):
contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
for cnt in contours:
area = cv2.contourArea(cnt)
if area > 500:
cv2.drawContours(imgcontour, cnt, -1, (255, 0, 0), 3)
peri = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, 0.02 * peri, True)
objcolor = len(approx)
x, y, w, h = cv2.boundingRect(approx)
if objcolor == 3:
objectType = "Tri"
elif objcolor == 4:
aspratio = w / float(h)
if aspratio > 0.95 and aspratio < 1.05:
objectType = "squre"
else:
objectType = "rectangle"
elif objcolor == 5:
objectType = "pentagon"
elif objcolor == 6:
objectType = "hexagon"
elif objcolor == 7:
objectType = "heptagon"
elif objcolor == 8:
objectType = "octagon"
elif objcolor > 10:
objectType = "circle"
else:
objectType = "polygon"
cv2.rectangle(imgcontour, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.putText(imgcontour, objectType, (x + (w // 2) - 5, y + (h // 2) - 10), cv2.FONT_HERSHEY_COMPLEX,
0.5, (0, 0, 0), 2)
img = image
imgcontour = img.copy()
imggray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
imgblur = cv2.GaussianBlur(imggray, (7, 7), 1)
imgcanny = cv2.Canny(imgblur, 50, 50)
getcontours(imgcanny)
filtered = imgcontour
getcontours(imgcanny)
filtered = imgcontour
return filtered
img = cv2.imread("stock/messi.jpg")
processed = get_filtered_image(img, "FACE_DETECTION")
cv2.imshow("processed", processed)
cv2.waitKey(0)