-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
81 lines (65 loc) · 3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import streamlit as st
import pandas as pd
import numpy as np
import pydeck as pdk
import plotly.express as px
st.title("Motor Vehicle Collicions in NewYork City")
st.markdown("This is a data dashboard that can be used to analyze accident reports in NYC 🗽💥🚗")
@st.cache(persist=True)
def data_load(nrows):
data = pd.read_csv('Motor_Vehicle_Collisions_-_Crashes.csv', nrows=nrows, parse_dates = [['CRASH_DATE','CRASH_TIME']])
data.dropna(subset=['LATITUDE','LONGITUDE'],inplace=True)
lowercase = lambda x: str(x).lower()
data.rename(lowercase,axis='columns',inplace=True)
data.rename(columns={'crash_date_crash_time':'date/time'},inplace=True)
return data
data = data_load(100000)
original_data = data
st.header("Where are the most people injured in NYC?")
injured_people = st.slider("Number Of Persons injured",0,19)
st.map(data.query("injured_persons >= @injured_people")[['latitude','longitude']].dropna(how="any"))
st.header("How many collisions occur during a given time of day?")
hour = st.slider("Hour to look at",0,23)
data = data[data['date/time'].dt.hour == hour]
st.markdown('Vehicle collisions between %i:00 and %i:00'%(hour,(hour+1)%24))
midpoint = (np.average(data['latitude']),np.average(data['longitude']))
st.write(pdk.Deck(
map_style = "mapbox://styles/mapbox/light-v9",
initial_view_state={
"latitude":midpoint[0],
"longitude":midpoint[1],
"zoom" : 11,
"pitch" : 50,
},
layers = [
pdk.Layer(
"HexagonLayer",
data = data[['date/time','latitude','longitude']],
get_position = ['longitude','latitude'],
radius = 100,
extruded = True,
pickable = True,
elevation_scale = 4,
elevation_range = [0,1000],
),
],
))
st.subheader("Breakdown by minute between %i:00 and %i:00" % (hour,(hour+1)%24))
filtered = data[
(data['date/time'].dt.hour >= hour) & (data['date/time'].dt.hour<(hour+1))
]
hist = np.histogram(filtered['date/time'].dt.minute,bins = 60, range = (0,60))[0]
chart_data = pd.DataFrame({'minute':range(60),'crashes':hist})
fig = px.bar(chart_data,x='minute',y='crashes',hover_data = ['minute','crashes'],height = 400)
st.write(fig)
st.header("Top 5 dangerous streets by affected type")
select = st.selectbox('Affected type of people',['Pedestrians','Cyclists','Motorists'])
if select == 'Pedestrians':
st.write(original_data.query('injured_pedestrians >=1')[['on_street_name',"injured_pedestrians"]].sort_values(by=['injured_pedestrians'],ascending = False).dropna(how= 'any')[:5])
elif select == 'Cyclists':
st.write(original_data.query('injured_cyclists >=1')[['on_street_name',"injured_cyclists"]].sort_values(by=['injured_cyclists'],ascending = False).dropna(how= 'any')[:5])
else:
st.write(original_data.query('injured_motorists >=1')[['on_street_name',"injured_motorists"]].sort_values(by=['injured_motorists'],ascending = False).dropna(how= 'any')[:5])
if st.checkbox('Show Raw Data',False):
st.subheader('Raw Data')
st.write(data)