forked from chuan/chmm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfhmm.c
507 lines (442 loc) · 13.3 KB
/
fhmm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
/*
* Copyright (c) 2009, Chuan Liu <[email protected]>
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define handle_error(msg) \
do { perror(msg); exit(EXIT_FAILURE); } while (0)
#define IDX(i,j,d) (((i)*(d))+(j))
int nstates = 0; /* number of states */
int nobvs = 0; /* number of observations */
int nseq = 0; /* number of data sequences */
int length = 0; /* data sequencel length */
float *prior = NULL; /* initial state probabilities */
float *trans = NULL; /* state transition probabilities */
float *obvs = NULL; /* output probabilities */
int *data = NULL;
float *gmm = NULL; /* gamma */
float *xi = NULL; /* xi */
float *pi = NULL; /* pi */
float logadd(float, float);
float sumf(float *, int);
float forward_backward(int *, size_t, int);
void viterbi(int *, size_t);
void init_count();
void update_prob();
void usage();
void freeall();
int main(int argc, char *argv[])
{
char *configfile = NULL;
FILE *fin, *bin;
char *linebuf = NULL;
size_t buflen = 0;
int iterations = 3;
int mode = 3;
int c;
float d;
float *loglik;
float p;
int i, j, k;
opterr = 0;
while ((c = getopt(argc, argv, "c:n:hp:")) != -1) {
switch (c) {
case 'c':
configfile = optarg;
break;
case 'h':
usage();
exit(EXIT_SUCCESS);
case 'n':
iterations = atoi(optarg);
break;
case 'p':
mode = atoi(optarg);
if (mode != 1 && mode != 2 && mode != 3) {
fprintf(stderr, "illegal mode: %d\n", mode);
exit(EXIT_FAILURE);
}
break;
case '?':
fprintf(stderr, "illegal options\n");
exit(EXIT_FAILURE);
default:
abort();
}
}
if (configfile == NULL) {
fin = stdin;
} else {
fin = fopen(configfile, "r");
if (fin == NULL) {
handle_error("fopen");
}
}
i = 0;
while ((c = getline(&linebuf, &buflen, fin)) != -1) {
if (c <= 1 || linebuf[0] == '#')
continue;
if (i == 0) {
if (sscanf(linebuf, "%d", &nstates) != 1) {
fprintf(stderr, "config file format error: %d\n", i);
freeall();
exit(EXIT_FAILURE);
}
prior = (float *) malloc(sizeof(float) * nstates);
if (prior == NULL) handle_error("malloc");
trans = (float *) malloc(sizeof(float) * nstates * nstates);
if (trans == NULL) handle_error("malloc");
xi = (float *) malloc(sizeof(float) * nstates * nstates);
if (xi == NULL) handle_error("malloc");
pi = (float *) malloc(sizeof(float) * nstates);
if (pi == NULL) handle_error("malloc");
} else if (i == 1) {
if (sscanf(linebuf, "%d", &nobvs) != 1) {
fprintf(stderr, "config file format error: %d\n", i);
freeall();
exit(EXIT_FAILURE);
}
obvs = (float *) malloc(sizeof(float) * nstates * nobvs);
if (obvs == NULL) handle_error("malloc");
gmm = (float *) malloc(sizeof(float) * nstates * nobvs);
if (gmm == NULL) handle_error("malloc");
} else if (i == 2) {
/* read initial state probabilities */
bin = fmemopen(linebuf, buflen, "r");
if (bin == NULL) handle_error("fmemopen");
for (j = 0; j < nstates; j++) {
if (fscanf(bin, "%f", &d) != 1) {
fprintf(stderr, "config file format error: %d\n", i);
freeall();
exit(EXIT_FAILURE);
}
prior[j] = logf(d);
}
fclose(bin);
} else if (i <= 2 + nstates) {
/* read state transition probabilities */
bin = fmemopen(linebuf, buflen, "r");
if (bin == NULL) handle_error("fmemopen");
for (j = 0; j < nstates; j++) {
if (fscanf(bin, "%f", &d) != 1) {
fprintf(stderr, "config file format error: %d\n", i);
freeall();
exit(EXIT_FAILURE);
}
trans[IDX((i - 3),j,nstates)] = logf(d);
}
fclose(bin);
} else if (i <= 2 + nstates * 2) {
/* read output probabilities */
bin = fmemopen(linebuf, buflen, "r");
if (bin == NULL) handle_error("fmemopen");
for (j = 0; j < nobvs; j++) {
if (fscanf(bin, "%f", &d) != 1) {
fprintf(stderr, "config file format error: %d\n", i);
freeall();
exit(EXIT_FAILURE);
}
obvs[IDX((i - 3 - nstates),j,nobvs)] = logf(d);
}
fclose(bin);
} else if (i == 3 + nstates * 2) {
if (sscanf(linebuf, "%d %d", &nseq, &length) != 2) {
fprintf(stderr, "config file format error: %d\n", i);
freeall();
exit(EXIT_FAILURE);
}
data = (int *) malloc (sizeof(int) * nseq * length);
if (data == NULL) handle_error("malloc");
} else if (i <= 3 + nstates * 2 + nseq) {
/* read data */
bin = fmemopen(linebuf, buflen, "r");
if (bin == NULL) handle_error("fmemopen");
for (j = 0; j < length; j++) {
if (fscanf(bin, "%d", &k) != 1 || k < 0 || k >= nobvs) {
fprintf(stderr, "config file format error: %d\n", i);
freeall();
exit(EXIT_FAILURE);
}
data[(i - 4 - nstates * 2) * length + j] = k;
}
fclose(bin);
}
i++;
}
fclose(fin);
if (linebuf) free(linebuf);
if (i < 4 + nstates * 2 + nseq) {
fprintf(stderr, "configuration incomplete.\n");
freeall();
exit(EXIT_FAILURE);
}
if (mode == 3) {
loglik = (float *) malloc(sizeof(float) * nseq);
if (loglik == NULL) handle_error("malloc");
for (i = 0; i < iterations; i++) {
init_count();
for (j = 0; j < nseq; j++) {
loglik[j] = forward_backward(data + length * j, length, 1);
}
p = sumf(loglik, nseq);
update_prob();
printf("iteration %d log-likelihood: %.4f\n", i + 1, p);
printf("updated parameters:\n");
printf("# initial state probability\n");
for (j = 0; j < nstates; j++) {
printf(" %.4f", exp(prior[j]));
}
printf("\n");
printf("# state transition probability\n");
for (j = 0; j < nstates; j++) {
for (k = 0; k < nstates; k++) {
printf(" %.4f", exp(trans[IDX(j,k,nstates)]));
}
printf("\n");
}
printf("# state output probility\n");
for (j = 0; j < nstates; j++) {
for (k = 0; k < nobvs; k++) {
printf(" %.4f", exp(obvs[IDX(j,k,nobvs)]));
}
printf("\n");
}
printf("\n");
}
free(loglik);
} else if (mode == 2) {
for (i = 0; i < nseq; i++) {
viterbi(data + length * i, length);
}
} else if (mode == 1) {
loglik = (float *) malloc(sizeof(float) * nseq);
if (loglik == NULL) handle_error("malloc");
for (i = 0; i < nseq; i++) {
loglik[i] = forward_backward(data + length * i, length, 0);
}
p = sumf(loglik, nseq);
for (i = 0; i < nseq; i++)
printf("%.4f\n", loglik[i]);
printf("total: %.4f\n", p);
free(loglik);
}
freeall();
return 0;
}
/* compute sum of the array using Kahan summation algorithm */
float sumf(float *data, int size)
{
float sum = data[0];
int i;
float y, t;
float c = 0.0;
for (i = 1; i < size; i++) {
y = data[i] - c;
t = sum + y;
c = (t - sum) - y;
sum = t;
}
return sum;
}
/* initilize counts */
void init_count() {
size_t i;
for (i = 0; i < nstates * nobvs; i++)
gmm[i] = - INFINITY;
for (i = 0; i < nstates * nstates; i++)
xi[i] = - INFINITY;
for (i = 0; i < nstates; i++)
pi[i] = - INFINITY;
}
void update_prob() {
float pisum = - INFINITY;
float gmmsum[nstates];
float xisum[nstates];
size_t i, j;
for (i = 0; i < nstates; i++) {
gmmsum[i] = - INFINITY;
xisum[i] = - INFINITY;
pisum = logadd(pi[i], pisum);
}
for (i = 0; i < nstates; i++) {
prior[i] = pi[i] - pisum;
}
for (i = 0; i < nstates; i++) {
for (j = 0; j < nstates; j++) {
xisum[i] = logadd(xisum[i], xi[IDX(i,j,nstates)]);
}
for (j = 0; j < nobvs; j++) {
gmmsum[i] = logadd(gmmsum[i], gmm[IDX(i,j,nobvs)]);
}
}
for (i = 0; i < nstates; i++) {
for (j = 0; j < nstates; j++) {
trans[IDX(i,j,nstates)] = xi[IDX(i,j,nstates)] - xisum[i];
}
for (j = 0; j < nobvs; j++) {
obvs[IDX(i,j,nobvs)] = gmm[IDX(i,j,nobvs)] - gmmsum[i];
}
}
}
/* forward backward algoritm: return observation likelihood */
float forward_backward(int *data, size_t len, int backward)
{
/* construct trellis */
float alpha[len][nstates];
float beta[len][nstates];
size_t i, j, k;
float p, e;
float loglik;
for (i = 0; i < len; i++) {
for (j = 0; j < nstates; j++) {
alpha[i][j] = - INFINITY;
beta[i][j] = - INFINITY;
}
}
/* forward pass */
for (i = 0; i < nstates; i++) {
alpha[0][i] = prior[i] + obvs[IDX(i,data[0],nobvs)];
}
for (i = 1; i < len; i++) {
for (j = 0; j < nstates; j++) {
for (k = 0; k < nstates; k++) {
p = alpha[i-1][k] + trans[IDX(k,j,nstates)] + obvs[IDX(j,data[i],nobvs)];
alpha[i][j] = logadd(alpha[i][j], p);
}
}
}
loglik = -INFINITY;
for (i = 0; i < nstates; i++) {
loglik = logadd(loglik, alpha[len-1][i]);
}
if (! backward)
return loglik;
/* backward pass & update counts */
for (i = 0; i < nstates; i++) {
beta[len-1][i] = 0; /* 0 = log (1.0) */
}
for (i = 1; i < len; i++) {
for (j = 0; j < nstates; j++) {
e = alpha[len-i][j] + beta[len-i][j] - loglik;
gmm[IDX(j,data[len-i],nobvs)] = logadd(gmm[IDX(j,data[len-i],nobvs)], e);
for (k = 0; k < nstates; k++) {
p = beta[len-i][k] + trans[IDX(j,k,nstates)] + obvs[IDX(k,data[len-i],nobvs)];
beta[len-1-i][j] = logadd(beta[len-1-i][j], p);
e = alpha[len-1-i][j] + beta[len-i][k]
+ trans[IDX(j,k,nstates)] + obvs[IDX(k,data[len-i],nobvs)] - loglik;
xi[IDX(j,k,nstates)] = logadd(xi[IDX(j,k,nstates)], e);
}
}
}
p = -INFINITY;
for (i = 0; i < nstates; i++) {
p = logadd(p, prior[i] + beta[0][i] + obvs[IDX(i,data[0],nobvs)]);
e = alpha[0][i] + beta[0][i] - loglik;
gmm[IDX(i,data[0],nobvs)] = logadd(gmm[IDX(i,data[0],nobvs)], e);
pi[i] = logadd(pi[i], e);
}
#ifdef DEBUG
/* verify if forward prob == backward prob */
if (fabs(p - loglik) > 1e-3) {
fprintf(stderr, "Error: forward and backward incompatible: %f, %f\n", loglik, p);
}
#endif
return loglik;
}
/* find the most probable sequence */
void viterbi(int *data, size_t len)
{
float lambda[len][nstates];
int backtrace[len][nstates];
int stack[len];
size_t i, j, k;
float p;
for (i = 0; i < len; i++) {
for (j = 0; j < nstates; j++) {
lambda[i][j] = - INFINITY;
}
}
for (i = 0; i < nstates; i++) {
lambda[0][i] = prior[i] + obvs[IDX(i,data[0],nobvs)];
backtrace[0][i] = -1; /* -1 is starting point */
}
for (i = 1; i < len; i++) {
for (j = 0; j < nstates; j++) {
for (k = 0; k < nstates; k++) {
p = lambda[i-1][k] + trans[IDX(k,j,nstates)] + obvs[IDX(j,data[i],nobvs)];
if (p > lambda[i][j]) {
lambda[i][j] = p;
backtrace[i][j] = k;
}
}
}
}
/* backtrace */
for (i = 0; i < nstates; i++) {
if (i == 0 || lambda[len-1][i] > p) {
p = lambda[len-1][i];
k = i;
}
}
stack[len - 1] = k;
for (i = 1; i < len; i++) {
stack[len - 1 - i] = backtrace[len - i][stack[len - i]];
}
for (i = 0; i < len; i++) {
printf("%d ", stack[i]);
}
printf("\n");
}
float logadd(float x, float y) {
if (y <= x)
return x + log1pf(expf(y - x));
else
return y + log1pf(expf(x - y));
}
void usage() {
fprintf(stdout, "hmm [-hnt] [-c config] [-p(1|2|3)]\n");
fprintf(stdout, "usage:\n");
fprintf(stdout, " -h help\n");
fprintf(stdout, " -c configuration file\n");
fprintf(stdout, " -t output computation time\n");
fprintf(stdout, " -p1 compute the probability of the observation sequence\n");
fprintf(stdout, " -p2 compute the most probable sequence (Viterbi)\n");
fprintf(stdout, " -p3 train hidden Markov mode parameters (Baum-Welch)\n");
fprintf(stdout, " -n number of iterations\n");
}
/* free all memory */
void freeall() {
if (trans) free(trans);
if (obvs) free(obvs);
if (prior) free(prior);
if (data) free(data);
if (gmm) free(gmm);
if (xi) free(xi);
if (pi) free(pi);
}