-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathchatglm_service_fastapi.py
179 lines (158 loc) · 7.07 KB
/
chatglm_service_fastapi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#! /usr/bin/python3
# -*- coding: utf-8 -*-
# ChatGLM-web-stream-demo
# Copyright (c) 2023 TylunasLi, MIT License
from fastapi import FastAPI, Request
from fastapi.staticfiles import StaticFiles
from sse_starlette.sse import ServerSentEvent, EventSourceResponse
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
import torch
from transformers import AutoTokenizer, AutoModel
import argparse
import logging
import os
import json
import sys
def getLogger(name, file_name, use_formatter=True):
logger = logging.getLogger(name)
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter('%(asctime)s %(message)s')
console_handler.setFormatter(formatter)
console_handler.setLevel(logging.INFO)
logger.addHandler(console_handler)
if file_name:
handler = logging.FileHandler(file_name, encoding='utf8')
handler.setLevel(logging.INFO)
if use_formatter:
formatter = logging.Formatter('%(asctime)s - %(name)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
logger = getLogger('ChatGLM', 'chatlog.log')
MAX_HISTORY = 5
class ChatGLM():
def __init__(self, quantize_level, gpu_id) -> None:
logger.info("Start initialize model...")
self.tokenizer = AutoTokenizer.from_pretrained(
"THUDM/chatglm-6b", trust_remote_code=True)
self.model = self._model(quantize_level, gpu_id)
self.model.eval()
_, _ = self.model.chat(self.tokenizer, "你好", history=[])
logger.info("Model initialization finished.")
def _model(self, quantize_level, gpu_id):
model_name = "THUDM/chatglm-6b"
quantize = int(args.quantize)
model = None
if gpu_id == '-1':
if quantize == 8:
print('CPU模式下量化等级只能是16或4,使用4')
model_name = "THUDM/chatglm-6b-int4"
elif quantize == 4:
model_name = "THUDM/chatglm-6b-int4"
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).float()
else:
gpu_ids = gpu_id.split(",")
self.devices = ["cuda:{}".format(id) for id in gpu_ids]
if quantize == 16:
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).half().cuda()
else:
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).half().quantize(quantize).cuda()
return model
def clear(self) -> None:
if torch.cuda.is_available():
for device in self.devices:
with torch.cuda.device(device):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def answer(self, query: str, history):
response, history = self.model.chat(self.tokenizer, query, history=history)
history = [list(h) for h in history]
return response, history
def stream(self, query, history):
if query is None or history is None:
yield {"query": "", "response": "", "history": [], "finished": True}
size = 0
response = ""
for response, history in self.model.stream_chat(self.tokenizer, query, history):
this_response = response[size:]
history = [list(h) for h in history]
size = len(response)
yield {"delta": this_response, "response": response, "finished": False}
logger.info("Answer - {}".format(response))
yield {"query": query, "delta": "[EOS]", "response": response, "history": history, "finished": True}
def start_server(quantize_level, http_address: str, port: int, gpu_id: str):
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = gpu_id
bot = ChatGLM(quantize_level, gpu_id)
app = FastAPI()
app.add_middleware( CORSMiddleware,
allow_origins = ["*"],
allow_credentials = True,
allow_methods=["*"],
allow_headers=["*"]
)
app.mount("/static", StaticFiles(directory="./static"), name="static")
@app.get("/")
def index():
return {'message': 'started', 'success': True}
@app.post("/chat")
async def answer_question(arg_dict: dict):
result = {"query": "", "response": "", "success": False}
try:
text = arg_dict["query"]
ori_history = arg_dict["history"]
logger.info("Query - {}".format(text))
if len(ori_history) > 0:
logger.info("History - {}".format(ori_history))
history = ori_history[-MAX_HISTORY:]
history = [tuple(h) for h in history]
response, history = bot.answer(text, history)
logger.info("Answer - {}".format(response))
ori_history.append((text, response))
result = {"query": text, "response": response,
"history": ori_history, "success": True}
except Exception as e:
logger.error(f"error: {e}")
return result
@app.post("/stream")
def answer_question_stream(arg_dict: dict):
def decorate(generator):
for item in generator:
yield ServerSentEvent(json.dumps(item, ensure_ascii=False), event='delta')
result = {"query": "", "response": "", "success": False}
try:
text = arg_dict["query"]
ori_history = arg_dict["history"]
logger.info("Query - {}".format(text))
if len(ori_history) > 0:
logger.info("History - {}".format(ori_history))
history = ori_history[-MAX_HISTORY:]
history = [tuple(h) for h in history]
return EventSourceResponse(decorate(bot.stream(text, history)))
except Exception as e:
logger.error(f"error: {e}")
return EventSourceResponse(decorate(bot.stream(None, None)))
@app.get("/clear")
def clear():
history = []
try:
bot.clear()
return {"success": True}
except Exception as e:
return {"success": False}
@app.get("/score")
def score_answer(score: int):
logger.info("score: {}".format(score))
return {'success': True}
logger.info("starting server...")
uvicorn.run(app=app, host=http_address, port=port, debug = False)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Stream API Service for ChatGLM-6B')
parser.add_argument('--device', '-d', help='device,-1 means cpu, other means gpu ids', default='0')
parser.add_argument('--quantize', '-q', help='level of quantize, option:16, 8 or 4', default=16)
parser.add_argument('--host', '-H', help='host to listen', default='0.0.0.0')
parser.add_argument('--port', '-P', help='port of this service', default=8800)
args = parser.parse_args()
start_server(args.quantize, args.host, int(args.port), args.device)