-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbleu_predictor.py
239 lines (218 loc) · 11.6 KB
/
bleu_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
'''
predict bleu score via linear regression model
'''
import random, argparse
import numpy as np
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
import sys
from scipy import stats
from tqdm import trange
class Net(nn.Module):
def __init__(self, feature_dim, hidden_dim, hidden_layer_num):
super(Net, self).__init__()
self.first_layer = nn.Linear(feature_dim, hidden_dim)
self.layers = nn.ModuleList()
for i in range(hidden_layer_num):
self.layers.append(nn.Linear(hidden_dim, hidden_dim))
self.predict = nn.Linear(hidden_dim, 1)
def forward(self, x):
x = F.relu(self.first_layer(x))
for i in range(len(self.layers)):
x = F.relu(self.layers[i](x))
x = self.predict(x)
return x
def convert_gene_to_arch_info(gene):
arch_info = {}
arch_info["encoder-embed-dim-subtransformer"] = gene["encoder"]["encoder_embed_dim"]
arch_info["encoder-layer-num-subtransformer"] = gene["encoder"]["encoder_layer_num"]
arch_info["encoder-ffn-embed-dim-all-subtransformer"] = gene["encoder"]["encoder_ffn_embed_dim"]
arch_info["encoder-self-attention-heads-all-subtransformer"] = gene["encoder"]["encoder_self_attention_heads"]
arch_info["decoder-embed-dim-subtransformer"] = gene["decoder"]["decoder_embed_dim"]
arch_info["decoder-layer-num-subtransformer"] = gene["decoder"]["decoder_layer_num"]
arch_info["decoder-ffn-embed-dim-all-subtransformer"] = gene["decoder"]["decoder_ffn_embed_dim"]
arch_info["decoder-self-attention-heads-all-subtransformer"] = gene["decoder"]["decoder_self_attention_heads"]
arch_info["decoder-ende-attention-heads-all-subtransformer"] = gene["decoder"]["decoder_ende_attention_heads"]
arch_info["decoder-arbitrary-ende-attn-all-subtransformer"] = gene["decoder"]["decoder_arbitrary_ende_attn"]
return arch_info
def convert_arch_info_to_features(arch_info, feature_type="hat"):
new_arch_info = {}
for info in arch_info:
if ":" in info:
new_arch_info[info.split(":")[0]] = eval(info.split(":")[1])
else:
new_arch_info[info] = arch_info[info]
arch_info = new_arch_info
features = []
if feature_type == "hat":
# hat's [640, 6, 2048, 6, 640, 6, 2048, 6, 6, 2]
# ours [640.0, 6.0, 3072.0, 8.0, 640.0, 6.0, 3072.0, 8.0, 8.0, 3.0]
features.append(arch_info["encoder-embed-dim-subtransformer"]/640.0)
features.append(arch_info["encoder-layer-num-subtransformer"]/6.0)
features.append(np.mean(arch_info["encoder-ffn-embed-dim-all-subtransformer"][0:arch_info["encoder-layer-num-subtransformer"]])/3072.0)
features.append(np.mean(arch_info["encoder-self-attention-heads-all-subtransformer"][0:arch_info["encoder-layer-num-subtransformer"]])/8.0)
features.append(arch_info["decoder-embed-dim-subtransformer"]/640.0)
features.append(arch_info["decoder-layer-num-subtransformer"]/6.0)
features.append(np.mean(arch_info["decoder-ffn-embed-dim-all-subtransformer"][0:arch_info["decoder-layer-num-subtransformer"]])/3072.0)
features.append(np.mean(arch_info["decoder-self-attention-heads-all-subtransformer"][0:arch_info["decoder-layer-num-subtransformer"]])/8.0)
features.append((np.mean(arch_info["decoder-ende-attention-heads-all-subtransformer"][0:arch_info["decoder-layer-num-subtransformer"]]))/8.0)
features.append((1.0+np.mean(arch_info["decoder-arbitrary-ende-attn-all-subtransformer"][0:arch_info["decoder-layer-num-subtransformer"]]))/3.0)
elif feature_type == "fine":
features.append(arch_info["encoder-embed-dim-subtransformer"]/640.0)
features.append(arch_info["encoder-layer-num-subtransformer"]/6.0)
for lay_idx in range(6):
if lay_idx < arch_info["encoder-layer-num-subtransformer"]:
features.append(arch_info["encoder-ffn-embed-dim-all-subtransformer"][lay_idx])
else:
features.append(0)
for lay_idx in range(6):
if lay_idx < arch_info["encoder-layer-num-subtransformer"]:
features.append(arch_info["encoder-self-attention-heads-all-subtransformer"][lay_idx])
else:
features.append(0)
features.append(arch_info["decoder-embed-dim-subtransformer"]/640.0)
features.append(arch_info["decoder-layer-num-subtransformer"]/6.0)
for lay_idx in range(6):
if lay_idx < arch_info["decoder-layer-num-subtransformer"]:
features.append(arch_info["decoder-ffn-embed-dim-all-subtransformer"][lay_idx])
else:
features.append(0)
for lay_idx in range(6):
if lay_idx < arch_info["decoder-layer-num-subtransformer"]:
features.append(arch_info["decoder-self-attention-heads-all-subtransformer"][lay_idx])
else:
features.append(0)
for lay_idx in range(6):
if lay_idx < arch_info["decoder-layer-num-subtransformer"]:
features.append(arch_info["decoder-ende-attention-heads-all-subtransformer"][lay_idx])
else:
features.append(0)
for lay_idx in range(6):
if lay_idx < arch_info["decoder-layer-num-subtransformer"]:
features.append(arch_info["decoder-arbitrary-ende-attn-all-subtransformer"][lay_idx])
else:
features.append(0)
return features
class BleuPredictor(object):
def __init__(self, x_train, y_train_teacher, x_test, y_test_gold, feature_dim, hidden_dim, hidden_layer_num, train_steps, bsz, lr, save_ckpt, save_file):
self.x_train = x_train
self.y_train_teacher = y_train_teacher
self.x_test = x_test
self.y_test_gold = y_test_gold
self.train_steps = train_steps
self.bsz = bsz
self.feature_dim = feature_dim
self.hidden_dim = hidden_dim
self.hidden_layer_num = hidden_layer_num
self.lr = lr
self.feature_norm = [640.0, 6.0, 3072.0, 8.0, 640.0, 6.0, 3072.0, 8.0, 8.0, 3.0]
self.save_ckpt = save_ckpt
self.save_file = save_file
self.model = Net(self.feature_dim, self.hidden_dim, self.hidden_layer_num)
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr)
self.criterion = torch.nn.MSELoss()
if torch.cuda.is_available():
self.model = self.model.to(0)
self.criterion = self.criterion.to(0)
def train(self):
for i in trange(self.train_steps):
sample_ind = random.sample(range(len(self.x_train)), k=self.bsz)
sample_x = [self.x_train[sample_ind[k]] for k in range(self.bsz)]
sample_y = [self.y_train_teacher[sample_ind[k]] for k in range(self.bsz)]
sample_x_tensor = torch.Tensor(sample_x)
sample_y_tensor = torch.Tensor(sample_y)
if torch.cuda.is_available():
sample_x_tensor = sample_x_tensor.to(0)
sample_y_tensor = sample_y_tensor.to(0)
prediction = self.model(sample_x_tensor).squeeze()
loss = self.criterion(prediction, sample_y_tensor)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if self.save_ckpt == 1:
torch.save(self.model.state_dict(), self.save_file)
def load_ckpt(self, ckpt_path):
self.model.load_state_dict(torch.load(ckpt_path))
def predict_bleu(self, config):
with torch.no_grad():
features = convert_arch_info_to_features(convert_gene_to_arch_info(config))
features = torch.Tensor(features) # np.array(features))
if torch.cuda.is_available():
features = features.to(0)
prediction = self.model(features).cpu().item()
return prediction
def test(self):
abs_diff, n = 0.0, 0.0
kendal = [[], []]
with torch.no_grad():
sample_x_tensor = torch.Tensor(self.x_test)
sample_y_tensor = torch.Tensor(self.y_test_gold)
if torch.cuda.is_available():
sample_x_tensor = sample_x_tensor.to(0)
sample_y_tensor = sample_y_tensor.to(0)
prediction = self.model(sample_x_tensor).squeeze()
for cur_pred, cur_gold in zip(prediction, y_test_gold):
abs_diff += abs(cur_pred.cpu().item()-cur_gold)
n += 1.0
kendal[0].append(cur_pred.cpu().item())
kendal[1].append(cur_gold)
mae = abs_diff/n
ktau = stats.kendalltau(kendal[0], kendal[1])[0]
return mae, ktau
if __name__=='__main__':
parser = argparse.ArgumentParser(description="bleu predictor")
parser.add_argument('--manual_seed', type=int, default=123, help='manual seed')
parser.add_argument("--gpt_scorer_outputs", type=str, default="/Users/ganeshj/Desktop/ubc_proj/hatv2/slurm/experiments/gpt_scorer_outputs", help="folder for gpt scorer outputs")
parser.add_argument("--testset_outputs", type=str, default="/Users/ganeshj/Desktop/ubc_proj/hatv2/slurm/experiments/train-test_seedarchs", help="folder for testset outputs")
parser.add_argument("--task", type=str, default="wmt14ende", help="folder for gpt scorer outputs")
parser.add_argument("--teacher_model", type=str, default="gpt-35-turbo", help="bleu generator model")
parser.add_argument('--feature-dim', type=int, default=10, help='dimension of feature vector')
parser.add_argument('--hidden-dim', type=int, default=400, help='hidden dimension of FC layers in bleu predictor')
parser.add_argument('--hidden-layer-num', type=int, default=3, help='number of FC layers')
parser.add_argument('--bsz', type=int, default=128, help='bleu predictor training batch size')
parser.add_argument('--lr', type=float, default=1e-5, help='bleu predictor training learning rate')
parser.add_argument('--train-steps', type=int, default=5000, help='bleu predictor training steps')
parser.add_argument("--feature_type", type=str, default="hat", help="hat or fine")
parser.add_argument('--src_seeds', type=int, nargs='+', help='seeds', default=[123, 456, 789])
parser.add_argument('--save-ckpt', type=int, default=0, help='1 for save, 0 for dont save')
parser.add_argument('--save-file', type=str, default="/tmp/model.ckpt", help='full path for checkpoint to be saved')
args = parser.parse_args()
random.seed(args.manual_seed)
np.random.seed(args.manual_seed)
torch.manual_seed(args.manual_seed)
torch.cuda.manual_seed_all(args.manual_seed)
maes, kendals = [], []
for src_seed in args.src_seeds:
# read training set
x_train, y_train_teacher = [], []
for dest_seed in [111, 222, 333, 444, 555, 666]:
for line in open(args.gpt_scorer_outputs + "/june13-gendata-%d-%s"%(dest_seed, args.teacher_model) + "/generations.jsonl"):
content = json.loads(line.strip())
if content["seed"] == src_seed and content["dataset"] == args.task and content["openai_model"] == args.teacher_model:
x_train.append(convert_arch_info_to_features(content["scratch"]["arch_info"], args.feature_type))
y_train_teacher.append(content["oai_valid_BLEU"])
# x_train = x_train[0:10]
# y_train_teacher = y_train_teacher[0:10]
# x_train = np.array(x_train)
# y_train_teacher = np.array(y_train_teacher)
# read test set
x_test, y_test_gold = [], []
for line in open(args.testset_outputs + "/" + str(src_seed) + "/" + args.task + "/test.jsonl"):
content = json.loads(line.strip())
y_test_gold.append(content["scratch"]["valid_BLEU"])
x_test.append(convert_arch_info_to_features(content["scratch"]["arch_info"], args.feature_type))
if len(x_test) == 1:
args.feature_dim = len(convert_arch_info_to_features(content["scratch"]["arch_info"], args.feature_type))
# x_test = np.array(x_test)
# y_test_gold = np.array(y_test_gold)
print("#train = %d"%(len(x_train)))
print("#test = %d"%(len(x_test)))
print("feature-dim = %d"%(args.feature_dim))
bleu_predict_model = BleuPredictor(x_train, y_train_teacher, x_test, y_test_gold, args.feature_dim, args.hidden_dim, args.hidden_layer_num, args.train_steps, args.bsz, args.lr, args.save_ckpt, args.save_file)
bleu_predict_model.train()
mae, kendal = bleu_predict_model.test()
maes.append(mae)
kendals.append(kendal)
print("%.2f (%.2f),%.2f (%.2f)"%(np.mean(maes), np.std(maes), np.mean(kendals), np.std(kendals)))