forked from GavinKerrigan/conf_matrix_and_calibration
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcombination_methods.py
847 lines (676 loc) · 35 KB
/
combination_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
from calibrators import *
import torch
from utils import *
from tqdm.auto import tqdm
import warnings
import torch
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import GridSearchCV, StratifiedKFold
from utils import *
from imax_calib.utils import safe_log_diff
from sklearn.linear_model import LogisticRegression
from calibrators import *
# This file implements the various combination methods.
class EMCombiner:
""" An abstract class for EM combination methods.
"""
def __init__(self, calibration_method):
self.calibrator = None
self.confusion_matrix = None # conf[i, j] is assumed to be P(h = i | Y = j)
self.n_train_u = None # Amount of unlabeled training data
self.n_train_l = None # Amount of labeled training data
self.n_cls = None # Number of classes
self.eps = 1e-50 # Tiny value for clipping
self.calibration_method = calibration_method
def initialize_confusion_matrix(self, p=0.9):
# Creates an initial estimate of confusion matrix
# Diagonal values are given by p, and off-diagonal entries are (1. - p) / (n-1) so rows are normalized
off_diag = (1. - p) / (self.n_cls - 1)
init_conf = np.ones((self.n_cls, self.n_cls)) * off_diag + np.eye(self.n_cls) * (p - off_diag)
return init_conf
def e_step(self, probs_m, y_h, conf_h):
weight_matrix = np.empty((self.n_train_u, self.n_cls)) # Entry [i, j] is P(Y = j | h_i, m_i, theta_t)
for i in range(self.n_train_u):
weight_matrix[i] = probs_m[i] * conf_h[y_h[i]]
normalizer = weight_matrix[i].sum()
weight_matrix[i] /= normalizer
return weight_matrix
def get_calibrator(self, **kwargs):
if self.calibration_method == 'temperature scaling':
raise NotImplementedError
#return SoftTSCalibrator()
elif self.calibration_method == 'hard temperature scaling':
return TSCalibrator()
elif self.calibration_method == 'dirichlet':
# reg_norm : bool, true if regularization is used
# reg_mu : None or float, if None regular L2 regularization is used
# reg_lambda : 0 or float, l2 regularization term
from dirichlet_python.dirichletcal.calib.fulldirichlet import FullDirichletCalibrator
# Default parameter suggested by the authors, c.f. https://arxiv.org/pdf/1910.12656.pdf , suppl. figure 8
reg_lambda = 1e-3
return FullDirichletCalibrator(reg_norm=True, reg_lambda=reg_lambda, reg_mu=None)
elif self.calibration_method == 'MAP temperature scaling':
mu_beta = kwargs.pop('mu_beta', 0.5)
sigma_beta = kwargs.pop('sigma_beta', 0.5)
return TSCalibratorMAP(prior_mu=mu_beta, prior_sigma=sigma_beta)
def calibrate(self, model_probs):
return self.calibrator.calibrate(model_probs)
def combine_proba(self, model_probs, y_h):
""" Combines model probabilities with hard labels via the calibrate-confuse equation given the confusion matrix.
Args:
p_m: Array of model probabilities ; shape (n_samples, n_classes)
y_h: List of hard labels ; shape (n_samples,)
Returns:
Normalized posterior probabilities P(Y | m, h). Entry [i, j] is P(Y = j | h_i, m_i)
"""
assert model_probs.shape[0] == y_h.size, 'Size mismatch between model probs and human labels'
assert model_probs.shape[1] == self.n_cls, 'Size mismatch between model probs and number of classes'
n_samples = model_probs.shape[0]
calibrated_model_probs = self.calibrate(model_probs)
calibrated_model_probs = np.clip(calibrated_model_probs, self.eps, None)
y_comb = np.empty((n_samples, self.n_cls))
for i in range(n_samples):
y_comb[i] = calibrated_model_probs[i] * self.confusion_matrix[y_h[i]]
# Normalize probabilities
y_comb /= np.sum(y_comb, axis=1, keepdims=True)
return y_comb
def combine(self, model_probs, y_h):
""" Combines model probs and y_h to return hard labels
"""
y_comb_soft = self.combine_proba(model_probs, y_h)
return np.argmax(y_comb_soft, axis=1)
class UnsupervisedEMCombiner(EMCombiner):
""" Fully unsupervised EM combination (fit using maximum likelihood)
"""
def __init__(self, calibration_method='temperature scaling'):
super().__init__(calibration_method)
def fit(self, model_probs, y_h, num_steps=750):
# Initialize
self.n_train_u, self.n_cls = model_probs.shape
conf_h = self.initialize_confusion_matrix(self.n_cls)
model_probs_clipped = np.clip(model_probs, self.eps, None)
model_logits = np.log(model_probs_clipped)
calibrated_model_probs = np.copy(model_probs_clipped)
# Optimization parameters
progbar = tqdm(total=num_steps, leave=False, desc='EM Steps (Unsupervised)')
eps = 1e-15 # Clipping parameter to avoid log(0)
loss_rel_tol = 1e-6 # Minimum relative change in loss - for early stopping
step = 0
prev_loss = 1e15
loss_tr = []
min_steps = 50
converged = False
while not converged:
weight_matrix = self.e_step(calibrated_model_probs, y_h, conf_h)
calibrator, conf_h = self.m_step(y_h, model_logits, weight_matrix)
# Evaluate loss
calibrated_model_probs = calibrator.calibrate(model_probs)
calibrated_model_probs_clipped = np.clip(calibrated_model_probs, eps, 1)
conf_h_clipped = np.clip(conf_h[y_h], eps, 1)
loss = np.sum(weight_matrix * (np.log(calibrated_model_probs_clipped) + np.log(conf_h_clipped)))
step += 1
if step > num_steps:
warnings.warn('(Unsupervised EM) Maximum number of steps reached -- may not have converged')
converged = (step > num_steps) or (np.abs(loss - prev_loss) / np.abs(prev_loss) < loss_rel_tol)
if step < min_steps:
converged = False
prev_loss = loss
loss_tr.append(loss)
progbar.update(1)
progbar.close()
self.calibrator = calibrator
self.confusion_matrix = conf_h
def m_step(self, y_h, model_logits, weight_matrix):
# Get new confusion matrix parameters
confusion_matrix = np.empty((self.n_cls, self.n_cls))
for b in range(self.n_cls):
for a in range(self.n_cls):
# Get entry P(h = a | Y = b)
confusion_matrix[a, b] = weight_matrix[y_h == a, b].sum()
confusion_matrix = np.clip(confusion_matrix, self.eps, None)
normalizer = np.sum(confusion_matrix, axis=0, keepdims=True)
confusion_matrix /= normalizer
# Get new calibration parameters
calibrator = self.get_calibrator()
calibrator.fit(model_logits, weight_matrix)
return calibrator, confusion_matrix
class UnsupervisedEMCombinerMAP(EMCombiner):
""" Fully unsupervised EM Combination (fit using MAP estimation)
NB: This is referred to in our paper as "P+L-EM"
"""
def __init__(self, calibration_method='MAP temperature scaling', diag_acc=0.75, strength=1., mu_beta=0.5, sigma_beta=0.5):
super().__init__(calibration_method)
self.diag_acc = diag_acc
self.strength = strength
self.prior_alpha = None
self.prior_beta = None
self.mu_beta = mu_beta
self.sigma_beta = sigma_beta
def fit(self, model_probs, y_h, num_steps=750):
# Initialize
self.n_train_u, self.n_cls = model_probs.shape
self.prior_alpha, self.prior_beta = get_dirichlet_params(self.diag_acc, self.strength, self.n_cls)
conf_h = self.initialize_confusion_matrix(self.n_cls)
model_probs_clipped = np.clip(model_probs, self.eps, None)
model_logits = np.log(model_probs_clipped)
calibrated_model_probs = np.copy(model_probs_clipped)
# Optimization parameters
progbar = tqdm(total=num_steps, leave=False, desc='EM Steps (Unsupervised)')
eps = 1e-15 # Clipping parameter to avoid log(0)
loss_rel_tol = 1e-6 # Minimum relative change in loss - for early stopping
step = 0
prev_loss = 1e15
loss_tr = []
min_steps = 50
converged = False
while not converged:
weight_matrix = self.e_step(calibrated_model_probs, y_h, conf_h)
calibrator, conf_h = self.m_step(y_h, model_logits, weight_matrix)
# Evaluate loss
calibrated_model_probs = calibrator.calibrate(model_probs)
calibrated_model_probs_clipped = np.clip(calibrated_model_probs, eps, 1)
conf_h_clipped = np.clip(conf_h[y_h], eps, 1)
loss = np.sum(weight_matrix * (np.log(calibrated_model_probs_clipped) + np.log(conf_h_clipped)))
step += 1
if step > num_steps:
warnings.warn('(Unsupervised EM) Maximum number of steps reached -- may not have converged')
converged = (step > num_steps) or (np.abs(loss - prev_loss) / np.abs(prev_loss) < loss_rel_tol)
if step < min_steps:
converged = False
prev_loss = loss
loss_tr.append(loss)
progbar.update(1)
progbar.close()
self.calibrator = calibrator
self.confusion_matrix = conf_h
def m_step(self, y_h, model_logits, weight_matrix):
# Get new confusion matrix parameters
confusion_matrix = np.empty((self.n_cls, self.n_cls))
for b in range(self.n_cls):
for a in range(self.n_cls):
# Get entry P(h = a | Y = b)
confusion_matrix[a, b] = weight_matrix[y_h == a, b].sum()
if a == b:
confusion_matrix[a, b] += self.prior_alpha
else:
confusion_matrix[a, b] += self.prior_beta
confusion_matrix = np.clip(confusion_matrix, self.eps, None)
normalizer = np.sum(confusion_matrix, axis=0, keepdims=True)
confusion_matrix = (confusion_matrix - np.eye(self.n_cls)) / (normalizer - self.n_cls)
# Get new calibration parameters
calibrator = self.get_calibrator(mu_beta=self.mu_beta, sigma_beta=self.sigma_beta)
calibrator.fit(model_logits, weight_matrix)
return calibrator, confusion_matrix
class SemiSupervisedEMCombiner(EMCombiner):
""" Semi-Supervised EM Combination
"""
def __init__(self, calibration_method='temperature scaling', unsupervised_weight=1.):
super().__init__(calibration_method)
self.unsupervised_weight = unsupervised_weight # Used to down-weight the unsupervised data in the M-step
def fit(self, model_probs_u, y_h_u, model_probs_l, y_h_l, y_true_l, num_steps=750):
# Initialize
self.n_train_u, self.n_cls = model_probs_u.shape
self.n_train_l = model_probs_l.shape[0]
conf_h = self.initialize_confusion_matrix(self.n_cls)
model_probs_u_clipped = np.clip(model_probs_u, self.eps, None)
model_probs_l_clipped = np.clip(model_probs_l, self.eps, None)
model_logits_u, model_logits_l = np.log(model_probs_u_clipped), np.log(model_probs_l_clipped)
calibrated_model_probs_u = np.copy(model_probs_u_clipped)
calibrated_model_probs_l = np.copy(model_probs_l_clipped)
nll = nn.NLLLoss()
# Optimization parameters
progbar = tqdm(total=num_steps, leave=False, desc='EM Steps (Semi-Supervised)')
eps = 1e-15 # Clipping parameter to avoid log(0)
loss_rel_tol = 1e-6 # Minimum relative change in loss - for early stopping
step = 0
prev_loss = 1e15
loss_tr = []
min_steps = 50
converged = False
while not converged:
# Weight matrix for unlabeled examples
weight_matrix_u = self.e_step(calibrated_model_probs_u, y_h_u, conf_h)
calibrator, conf_h = self.m_step(y_h_u, model_logits_u, weight_matrix_u,
y_h_l, model_logits_l, y_true_l)
calibrated_model_probs_u = calibrator.calibrate(model_probs_u)
calibrated_model_probs_l = calibrator.calibrate(model_probs_l)
# Evaluate loss
loss_u = np.sum(weight_matrix_u * (np.log(np.clip(calibrated_model_probs_u, eps, 1)) +
np.log(np.clip(conf_h[y_h_u], eps, 1))))
loss_l = nll(torch.log(torch.from_numpy(np.clip(calibrated_model_probs_l, eps, 1))),
torch.from_numpy(y_true_l)) + np.log(np.clip(conf_h[y_h_l, y_true_l], eps, 1)).sum()
loss = self.unsupervised_weight * loss_u + loss_l
step += 1
if step > num_steps:
warnings.warn('(SemiSup EM) Maximum number of steps reached -- may not have converged')
converged = (step > num_steps) or (np.abs(loss - prev_loss) / np.abs(prev_loss) < loss_rel_tol)
if step < min_steps:
converged = False
prev_loss = loss
loss_tr.append(loss)
progbar.update(1)
progbar.close()
self.calibrator = calibrator
self.confusion_matrix = conf_h
def m_step(self, y_h_u, model_logits_u, weight_matrix_u, y_h_l, model_logits_l, y_true_l):
# Get new confusion matrix parameters
# Get entry psi_ab = P(h = a | y = b)
confusion_matrix = np.empty((self.n_cls, self.n_cls))
for b in range(self.n_cls):
for a in range(self.n_cls):
# Sum of soft entries P(Y = b | h_i, m_i) where h_i = a
confusion_matrix[a, b] = self.unsupervised_weight * weight_matrix_u[y_h_u == a, b].sum()
# Count of labeled entries where h_i = a and y_true = b
confusion_matrix[a, b] += ((y_h_l == a) & (y_true_l == b)).sum()
confusion_matrix = np.clip(confusion_matrix, self.eps, None)
normalizer = np.sum(confusion_matrix, axis=0, keepdims=True)
confusion_matrix /= normalizer
# Get new calibration parameters
calibrator = self.get_calibrator()
calibrator.unsupervised_weight = self.unsupervised_weight
calibrator.fit(model_logits_u, weight_matrix_u,
model_logits_l, y_true_l)
return calibrator, confusion_matrix
class CalibrateFirstCombiner(EMCombiner):
""" This will implement the following combination model:
- First calibrate on labeled data (small amount)
- Then fit confusion matrix only using semisup-EM
"""
def __init__(self, calibration_method='hard temperature scaling', unsupervised_weight=1.):
super().__init__(calibration_method)
self.unsupervised_weight = unsupervised_weight
def fit(self, model_probs_u, y_h_u, model_probs_l, y_h_l, y_true_l, num_steps=750):
# Initialize
self.n_train_u, self.n_cls = model_probs_u.shape
self.n_train_l = model_probs_l.shape[0]
conf_h = self.initialize_confusion_matrix(self.n_cls)
model_logits_u, model_logits_l = np.log(model_probs_u), np.log(model_probs_l)
# Fit calibration map on labeled data
calibrator = self.get_calibrator()
calibrator.fit(model_logits_l, y_true_l)
calibrated_model_probs_u = calibrator.calibrate(model_probs_u)
calibrated_model_probs_l = calibrator.calibrate(model_probs_l)
nll = nn.NLLLoss()
# Optimization parameters
progbar = tqdm(total=num_steps, leave=False, desc='EM Steps (Calibrate First)')
eps = 1e-15 # Clipping parameter to avoid log(0)
loss_rel_tol = 1e-6 # Minimum relative change in loss - for early stopping
step = 0
prev_loss = 1e15
loss_tr = []
min_steps = 50
converged = False
while not converged:
# Weight matrix for unlabeled examples
weight_matrix_u = self.e_step(calibrated_model_probs_u, y_h_u, conf_h)
conf_h = self.m_step(y_h_u, weight_matrix_u, y_h_l, y_true_l)
# Evaluate loss
loss_u = np.sum(weight_matrix_u * (np.log(np.clip(calibrated_model_probs_u, eps, 1)) +
np.log(np.clip(conf_h[y_h_u], eps, 1))))
loss_l = nll(torch.log(torch.from_numpy(np.clip(calibrated_model_probs_l, eps, 1))),
torch.from_numpy(y_true_l)) + np.log(np.clip(conf_h[y_h_l, y_true_l], eps, 1)).sum()
loss = loss_u + loss_l
step += 1
if step > num_steps:
warnings.warn('(SemiSup EM) Maximum number of steps reached -- may not have converged')
converged = (step > num_steps) or (np.abs(loss - prev_loss) / np.abs(prev_loss) < loss_rel_tol)
if step < min_steps:
converged = False
prev_loss = loss
loss_tr.append(loss)
progbar.update(1)
progbar.close()
self.calibrator = calibrator
self.confusion_matrix = conf_h
def m_step(self, y_h_u, weight_matrix_u, y_h_l, y_true_l):
# Only updates the confusion matrix, calibration parameters left fix
# Get new confusion matrix parameters
# Get entry psi_ab = P(h = a | y = b)
confusion_matrix = np.empty((self.n_cls, self.n_cls))
for b in range(self.n_cls):
for a in range(self.n_cls):
# Sum of soft entries P(Y = b | h_i, m_i) where h_i = a
confusion_matrix[a, b] = self.unsupervised_weight * weight_matrix_u[y_h_u == a, b].sum()
# Count of labeled entries where h_i = a and y_true = b
confusion_matrix[a, b] += ((y_h_l == a) & (y_true_l == b)).sum()
confusion_matrix = np.clip(confusion_matrix, self.eps, None)
normalizer = np.sum(confusion_matrix, axis=0, keepdims=True)
confusion_matrix /= normalizer
return confusion_matrix
class OracleCombiner:
""" Implements the P+L combination method, fit using maximum likelihood
"""
def __init__(self, calibration_method='temperature scaling', **kwargs):
self.calibrator = None
self.confusion_matrix = None # conf[i, j] is assumed to be P(h = i | Y = j)
self.n_train_u = None # Amount of unlabeled training data
self.n_train_l = None # Amount of labeled training data
self.n_cls = None # Number of classes
self.eps = 1e-50
self.use_cv = False
self.calibration_method = calibration_method
if self.calibration_method == 'temperature scaling':
self.calibrator = TSCalibrator()
elif self.calibration_method == 'dirichlet':
# reg_norm : bool, true if regularization is used
# reg_mu : None or float, if None regular L2 regularization is used
# reg_lambda : 0 or float, l2 regularization term
from dirichlet_python.dirichletcal.calib.fulldirichlet import FullDirichletCalibrator
self.calibrator = FullDirichletCalibrator(reg_norm=True, reg_lambda=0.0, reg_mu=None)
self.use_cv = True
elif self.calibration_method == 'ensemble temperature scaling':
self.calibrator = EnsembleTSCalibrator()
elif self.calibration_method == 'imax binning':
mode = kwargs.pop('mode', 'sCW')
num_bins = kwargs.pop('num_bins', 15)
self.calibrator = IMaxCalibrator(mode=mode, num_bins=num_bins)
elif self.calibration_method == 'none':
self.calibrator = IdentityCalibrator()
def calibrate(self, model_probs):
return self.calibrator.calibrate(model_probs)
def fit(self, model_probs, y_h, y_true):
self.n_cls = model_probs.shape[1]
# Estimate human confusion matrix
# Entry [i, j] is #(Y = i and h = j)
conf_h = 1. * confusion_matrix(y_true, y_h, labels=np.arange(self.n_cls))
# Swap so entry [i, j] is #(h = i and Y = j)
conf_h = conf_h.T
conf_h = np.clip(conf_h, self.eps, None)
normalizer = np.sum(conf_h, axis=0, keepdims=True)
# Normalize columns so entry [i, j] is P(h = i | Y = j)
conf_h /= normalizer
self.confusion_matrix = conf_h
# Calibrate model probabilities
if self.use_cv:
self.fit_calibrator_cv(model_probs, y_true)
else:
self.fit_calibrator(model_probs, y_true)
def fit_bayesian(self, model_probs, y_h, y_true, alpha=0.1, beta=0.1):
""" This is the "plus one" parameterization, i.e. alpha,beta just need to be > 0
Really corresponds to a Dirichlet(alpha+1, beta+1, beta+1, . . . ,beta+1) distribution
"""
self.n_cls = model_probs.shape[1]
prior_matr = np.eye(self.n_cls) * alpha + (np.ones(self.n_cls) - np.eye(self.n_cls)) * beta
conf_h = 1. * confusion_matrix(y_true, y_h, labels=np.arange(self.n_cls))
conf_h += prior_matr
# Swap so entry [i, j] is #(h = i and Y = j)
conf_h = conf_h.T
#conf_h = np.clip(conf_h, self.eps, None)
normalizer = np.sum(conf_h, axis=0, keepdims=True)
# Normalize columns so entry [i, j] is P(h = i | Y = j)
conf_h = conf_h / normalizer
self.confusion_matrix = conf_h
# Calibrate model probabilities
if self.use_cv:
self.fit_calibrator_cv(model_probs, y_true)
else:
self.fit_calibrator(model_probs, y_true)
def fit_calibrator(self, model_probs, y_true):
clipped_model_probs = np.clip(model_probs, self.eps, 1)
model_logits = np.log(clipped_model_probs)
self.calibrator.fit(model_logits, y_true)
def fit_calibrator_cv(self, model_probs, y_true):
# Fits calibration maps that require hyperparameters, using cross-validation
if self.calibration_method == 'dirichlet':
reg_lambda_vals = [10., 1., 0., 5e-1, 1e-1, 1e-2, 1e-3]
skf = StratifiedKFold(n_splits=3, shuffle=True, random_state=0)
gscv = GridSearchCV(self.calibrator, param_grid={'reg_lambda': reg_lambda_vals,
'reg_mu': [None]},
cv=skf, scoring='neg_log_loss', refit=True)
gscv.fit(model_probs, y_true)
self.calibrator = gscv.best_estimator_
else:
raise NotImplementedError
def combine_proba(self, model_probs, y_h):
""" Combines model probabilities with hard labels via the calibrate-confuse equation given the confusion matrix.
Args:
p_m: Array of model probabilities ; shape (n_samples, n_classes)
y_h: List of hard labels ; shape (n_samples,)
Returns:
Normalized posterior probabilities P(Y | m, h). Entry [i, j] is P(Y = j | h_i, m_i)
"""
assert model_probs.shape[0] == y_h.size, 'Size mismatch between model probs and human labels'
assert model_probs.shape[1] == self.n_cls, 'Size mismatch between model probs and number of classes'
n_samples = model_probs.shape[0]
calibrated_model_probs = self.calibrate(model_probs)
y_comb = np.empty((n_samples, self.n_cls))
for i in range(n_samples):
y_comb[i] = calibrated_model_probs[i] * self.confusion_matrix[y_h[i]]
if np.allclose(y_comb[i], 0): # Handle zero rows
y_comb[i] = np.ones(self.n_cls) * (1./self.n_cls)
# Don't forget to normalize :)
assert np.all(np.isfinite(np.sum(y_comb, axis=1)))
assert np.all(np.sum(y_comb, axis=1) > 0)
y_comb /= np.sum(y_comb, axis=1, keepdims=True)
return y_comb
def combine(self, model_probs, y_h):
""" Combines model probs and y_h to return hard labels
"""
y_comb_soft = self.combine_proba(model_probs, y_h)
return np.argmax(y_comb_soft, axis=1)
class DoubleConfusionCombiner:
""" Implements the double-confusion matrix combiner ("L+L") using maximum likelihood inference
"""
def __init__(self, calibration_method='temperature scaling'):
self.confusion_matrix_h = None # entry [i, j] is P(h = i | Y = j)
self.confusion_matrix_m = None # entry [i, j] is P(Y = j | m = i)
self.n_train_u = None # Amount of unlabeled training data
self.n_train_l = None # Amount of labeled training data
self.n_cls = None # Number of classes
self.eps = 1e-50
def fit(self, model_probs, y_h, y_true):
self.n_cls = model_probs.shape[1]
self.n_train_l = y_true.size
# Estimate human confusion matrix
# Entry [i, j] is #(Y = i and h = j)
conf_h = 1. * confusion_matrix(y_true, y_h, labels=np.arange(self.n_cls))
# Swap so entry [i, j] is #(h = i and Y = j)
conf_h = conf_h.T
conf_h = np.clip(conf_h, self.eps, None)
normalizer = np.sum(conf_h, axis=0, keepdims=True)
# Normalize columns so entry [i, j] is P(h = i | Y = j)
conf_h /= normalizer
self.confusion_matrix_h = conf_h
# Estimate model confusion matrix
y_m = np.argmax(model_probs, axis=1)
# [i, j] = #(Y = i and m = j)
conf_m = 1. * confusion_matrix(y_true, y_m, labels=np.arange(self.n_cls))
conf_m = conf_m.T # [i, j] = #(m = i and Y = j)
conf_m = np.clip(conf_m, self.eps, None)
normalizer = np.sum(conf_m, axis=1, keepdims=True) # NB: normalize rows here, not columns!
conf_m /= normalizer
self.confusion_matrix_m = conf_m
def combine_proba(self, model_probs, y_h):
""" Combines model probabilities with hard labels via the calibrate-confuse equation given the confusion matrix.
Args:
p_m: Array of model probabilities ; shape (n_samples, n_classes)
y_h: List of hard labels ; shape (n_samples,)
Returns:
Normalized posterior probabilities P(Y | m, h). Entry [i, j] is P(Y = j | h_i, m_i)
"""
assert model_probs.shape[0] == y_h.size, 'Size mismatch between model probs and human labels'
assert model_probs.shape[1] == self.n_cls, 'Size mismatch between model probs and number of classes'
n_samples = model_probs.shape[0]
y_m = np.argmax(model_probs, axis=1)
y_comb = np.empty((n_samples, self.n_cls))
for i in range(n_samples):
y_comb[i] = self.confusion_matrix_m[y_m[i]] * self.confusion_matrix_h[y_h[i]]
# Don't forget to normalize :)
y_comb /= np.sum(y_comb, axis=1, keepdims=True)
return y_comb
def combine(self, model_probs, y_h):
""" Combines model probs and y_h to return hard labels
"""
y_comb_soft = self.combine_proba(model_probs, y_h)
return np.argmax(y_comb_soft, axis=1)
def calibrate(self, model_probs):
preds = np.argmax(model_probs, axis=1)
probs = self.confusion_matrix_m[preds, :]
return probs
class BayesianOracleCombiner(OracleCombiner):
""" Fully Bayesian P+L combiner
"""
def __init__(self, diag_acc=0.75, strength=1., mu_beta=0.5, sigma_beta=0.5, **kwargs):
super().__init__()
self.calibrator = None
self.prior_params = {'mu_beta': mu_beta,
'sigma_beta': sigma_beta
}
self.n_cls = None
self.diag_acc = diag_acc
self.strength = strength
def calibrate(self, model_probs):
logits = torch.from_numpy(np.clip(model_probs, 1e-50, 1))
return self.calibrator.calibrate(logits)
def fit(self, model_probs, y_h, y_true, model_logits=None):
self.n_cls = model_probs.shape[1]
# Get posterior distribution over confusion matrix parameters
alpha, beta = get_dirichlet_params(self.diag_acc, self.strength, self.n_cls)
prior_matr = np.eye(self.n_cls) * alpha + (np.ones(self.n_cls) - np.eye(self.n_cls)) * beta
posterior_matr = 1. * confusion_matrix(y_true, y_h, labels=np.arange(self.n_cls))
posterior_matr += prior_matr
posterior_matr = posterior_matr.T
posterior_matr /= np.sum(posterior_matr, axis=0, keepdims=True)
self.confusion_matrix = posterior_matr
# Get samples from posterior distribution over temperature
self.calibrator = BayesianTemperingCalibrator(self.prior_params, self.n_cls)
logits = np.log(np.clip(model_probs, 1e-50, 1))
logits = torch.from_numpy(logits)
self.calibrator.fit(logits, torch.from_numpy(y_true))
class MAPOracleCombiner(OracleCombiner):
""" P+L combination method, fit using MAP estimates
This is our preferred combination method.
"""
def __init__(self, diag_acc=0.75, strength=1., mu_beta=0.5, sigma_beta=0.5, **kwargs):
super().__init__()
self.calibrator = None
self.prior_params = {'mu_beta': mu_beta,
'sigma_beta': sigma_beta
}
#self.n_cls = None
self.diag_acc = diag_acc
self.strength = strength
def fit(self, model_probs, y_h, y_true, model_logits=None):
self.n_cls = model_probs.shape[1]
# Get MAP estimate of confusion matrix
alpha, beta = get_dirichlet_params(self.diag_acc, self.strength, self.n_cls)
prior_matr = np.eye(self.n_cls) * alpha + (np.ones(self.n_cls) - np.eye(self.n_cls)) * beta
posterior_matr = 1. * confusion_matrix(y_true, y_h, labels=np.arange(self.n_cls))
posterior_matr += prior_matr
posterior_matr = posterior_matr.T
posterior_matr = (posterior_matr - np.ones(self.n_cls)) / (np.sum(posterior_matr, axis=0, keepdims=True) - self.n_cls)
self.confusion_matrix = posterior_matr
self.calibrator = TSCalibratorMAP()
logits = np.log(np.clip(model_probs, 1e-50, 1))
self.calibrator.fit(logits, y_true)
class LRCombiner:
""" Implements a logistic regression model for combining ("LR" in our paper)
"""
def __init__(self):
self.n_cls = None
self.clf = None
def fit(self, model_probs, y_h, y_true):
self.n_cls = model_probs.shape[1]
y_h_onehot = np.eye(self.n_cls)[y_h]
X = np.hstack((model_probs, y_h_onehot))
self.clf = LogisticRegression()
self.clf.fit(X, y_true)
def calibrate(self, model_probs):
# TODO
raise NotImplementedError
def combine_proba(self, model_probs, y_h):
y_h_onehot = np.eye(self.n_cls)[y_h]
X = np.hstack((model_probs, y_h_onehot))
pred_proba = self.clf.predict_proba(X)
# Need to set classes manually when data is limited
probs = np.zeros((pred_proba.shape[0], self.n_cls))
probs[:, self.clf.classes_] = pred_proba
return probs
def combine(self, model_probs, y_h):
y_h_onehot = np.eye(self.n_cls)[y_h]
X = np.hstack((model_probs, y_h_onehot))
return self.clf.predict(X)
class DoubleConfusionCombinerMAP:
""" Implements the double-confusion matrix combiner ("L+L") using MAP inference
"""
# Combines via the model and human's confusion matrices (i.e. no calibration)
def __init__(self, calibration_method='temperature scaling', diag_acc=0.75, strength=1.):
self.confusion_matrix_h = None # entry [i, j] is P(h = i | Y = j)
self.confusion_matrix_m = None # entry [i, j] is P(Y = j | m = i)
self.n_train_u = None # Amount of unlabeled training data
self.n_train_l = None # Amount of labeled training data
self.n_cls = None # Number of classes
self.diag_acc = diag_acc
self.strength = strength
self.eps = 1e-50
def fit(self, model_probs, y_h, y_true):
self.n_cls = model_probs.shape[1]
self.n_train_l = y_true.size
alpha, beta = get_dirichlet_params(self.diag_acc, self.strength, self.n_cls)
prior_matr = np.eye(self.n_cls) * alpha + (np.ones(self.n_cls) - np.eye(self.n_cls)) * beta
conf_h = 1. * confusion_matrix(y_true, y_h, labels=np.arange(self.n_cls))
conf_h += prior_matr
conf_h = conf_h.T
normalizer = np.sum(conf_h, axis=0, keepdims=True)
conf_h = (conf_h - np.ones(self.n_cls)) / (normalizer - self.n_cls)
self.confusion_matrix_h = conf_h
# Estimate model confusion matrix
y_m = np.argmax(model_probs, axis=1)
conf_m = 1. * confusion_matrix(y_true, y_m, labels=np.arange(self.n_cls))
conf_m += prior_matr
conf_m = conf_m.T # [i, j] = #(m = i and Y = j)
normalizer = np.sum(conf_m, axis=1, keepdims=True) # NB: normalize rows here, not columns!
conf_m = (conf_m - np.ones(self.n_cls)) / (normalizer - self.n_cls)
self.confusion_matrix_m = conf_m
def combine_proba(self, model_probs, y_h):
""" Combines model probabilities with hard labels via the calibrate-confuse equation given the confusion matrix.
Args:
p_m: Array of model probabilities ; shape (n_samples, n_classes)
y_h: List of hard labels ; shape (n_samples,)
Returns:
Normalized posterior probabilities P(Y | m, h). Entry [i, j] is P(Y = j | h_i, m_i)
"""
assert model_probs.shape[0] == y_h.size, 'Size mismatch between model probs and human labels'
assert model_probs.shape[1] == self.n_cls, 'Size mismatch between model probs and number of classes'
n_samples = model_probs.shape[0]
y_m = np.argmax(model_probs, axis=1)
y_comb = np.empty((n_samples, self.n_cls))
for i in range(n_samples):
y_comb[i] = self.confusion_matrix_m[y_m[i]] * self.confusion_matrix_h[y_h[i]]
# Don't forget to normalize :)
y_comb /= np.sum(y_comb, axis=1, keepdims=True)
return y_comb
def combine(self, model_probs, y_h):
""" Combines model probs and y_h to return hard labels
"""
y_comb_soft = self.combine_proba(model_probs, y_h)
return np.argmax(y_comb_soft, axis=1)
def calibrate(self, model_probs):
preds = np.argmax(model_probs, axis=1)
probs = self.confusion_matrix_m[preds, :]
return probs
class SingleHumanParamCombinerMAP(OracleCombiner):
""" Implements a simble ablation where the human's confusion matrix is only estimated with a single parameter
"""
def __init__(self, calibration_method='temperature scaling', diag_acc=0.75, strength=1.):
super().__init__(calibration_method=calibration_method)
self.confusion_matrix_h = None # entry [i, j] is P(h = i | Y = j)
self.confusion_matrix_m = None # entry [i, j] is P(Y = j | m = i)
self.n_train_u = None # Amount of unlabeled training data
self.n_train_l = None # Amount of labeled training data
self.n_cls = None # Number of classes
self.diag_acc = diag_acc
self.strength = strength
self.eps = 1e-50
def fit(self, model_probs, y_h, y_true):
self.n_cls = model_probs.shape[1]
b = 1.1
a = self.diag_acc / (1 - self.diag_acc) * b
a *= self.strength
b *= self.strength
n_human_correct = np.sum(y_h == y_true)
diag_val = (n_human_correct + a - 1) / (y_h.size + a + b - 2)
conf_h = np.eye(self.n_cls) * diag_val + (np.ones(self.n_cls) - np.eye(self.n_cls)) * (1. - diag_val ) / (self.n_cls-1)
self.confusion_matrix = conf_h
# Calibrate model probabilities
self.fit_calibrator(model_probs, y_true)