-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
294 lines (238 loc) · 11.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
from pathlib import Path
import random
from collections import defaultdict
import numpy as np
import torch
from torch.utils.data import DataLoader
from torch.nn.utils import clip_grad_norm_ as clip_grad
from tqdm import tqdm
import pickle
import datetime
from lib.data import PointPatternDataset, pad_and_combine_instances
from lib.arguments import get_args
from lib.utils import *
def forward_pass(args, batch, model, sample_timestamps=None, num_samples=150, get_raw_likelihoods=False):
if args.cuda:
batch = {k: v.cuda(torch.cuda.current_device()) for k, v in batch.items()}
padding_mask = batch["padding_mask"]
tgt_marks, tgt_timestamps = batch["target_marks"], batch["target_times"]
pp_id = batch["pp_id"]
T = batch["T"]
if sample_timestamps is None:
sample_timestamps = torch.rand(
tgt_timestamps.shape[0],
num_samples,
dtype=tgt_timestamps.dtype,
device=tgt_timestamps.device
).clamp(min=1e-8) * T # ~ U(0, T)
# Forward Pass
results = model(
marks=tgt_marks,
timestamps=tgt_timestamps,
sample_timestamps=sample_timestamps,
)
# Calculate losses
ll_results = model.log_likelihood(
return_dict=results,
target_marks = tgt_marks,
right_window=T,
left_window=0.0,
mask=padding_mask,
# reduce=not get_raw_likelihoods,
normalize_by_window=args.normalize_by_window,
normalize_by_events=args.normalize_by_events,
gamma=args.gamma
)
if get_raw_likelihoods:
return ll_results, sample_timestamps, tgt_timestamps
log_likelihood, ll_mark_contrib, ll_time_contrib, ll_time_pos, ll_time_neg = \
ll_results["log_likelihood"], ll_results["positive_contribution_marks"], ll_results["timing_contribution"], \
ll_results["positive_contribution_pp"], ll_results["negative_contribution"]
if args.only_train_on_time:
loss = -1 * ll_time_contrib
else:
loss = -1 * log_likelihood # minimize loss, maximize log likelihood
return_dict = {
"loss": loss,
"log_likelihood": log_likelihood,
"ll_mark": ll_mark_contrib,
"ll_time": ll_time_contrib,
"ll_time_pos": ll_time_pos,
"ll_time_neg": ll_time_neg
}
if args.normalize_by_events:
return_dict["ll_mark_norm"] = ll_results["positive_contribution_marks_norm"]
return return_dict, results
def backward_pass(args, loss, model, optimizer):
optimizer.zero_grad()
if torch.isnan(loss).any().item():
return False
else:
loss.backward()
clip_grad(parameters=model.parameters(), max_norm=args.grad_clip, norm_type=2)
return True
def analyze_gradient_scale(loss, model, optimizer, epoch_number):
print(f'Start printing gradient scales for epoch: {epoch_number}')
for loss_name, loss_component in loss.items():
optimizer.zero_grad()
loss_component.backward(retain_graph=True)
total_grad_norm = 0
for name, param in model.named_parameters():
if name.startswith('hidden_to_item_logits') or name.startswith('decoder.channel_embedding'):
continue
else:
# Consider having check to see if `p` comes from the main model or the mark-specific component
# If `p` is only used for the mark-distribution, then don't add it to the total_grad_norm
param_norm = param.grad.norm(2)
total_grad_norm += param_norm.item() ** 2
total_grad_norm = total_grad_norm ** (1./2)
print_log(f'The scale of {loss_name} is: {total_grad_norm}')
if loss_name == 'll_mark':
mark_grad = total_grad_norm
elif loss_name == 'll_time':
time_grad = total_grad_norm
optimizer.zero_grad()
print("Finish printing gradients")
return (mark_grad/time_grad)
def train_step(args, model, optimizer, lr_scheduler, batch, epoch_number, print_gradient, gradients_ratio_mark_to_time):
loss_results, forward_results = forward_pass(args, batch, model)
if args.analyze_gradient and print_gradient: # check the scale of gradient every epoch
gradients_ratio = analyze_gradient_scale(loss_results, model, optimizer, epoch_number)
gradients_ratio_mark_to_time.append(gradients_ratio)
save_results(args, gradients_ratio_mark_to_time, save_gradients=True)
if backward_pass(args, loss_results["loss"], model, optimizer):
optimizer.step()
lr_scheduler.step()
else:
print_log('======= NAN-Loss =======')
print_log("Loss Results:",
{k: (torch.isnan(v).any().item(), v.min().item(), v.max().item()) for k, v in loss_results.items() if
isinstance(v, torch.Tensor)})
print_log("Loss Results:", loss_results)
print_log("")
print_log("Batch:",
{k: (torch.isnan(v).any().item(), v.min().item(), v.max().item()) for k, v in batch.items() if
isinstance(v, torch.Tensor)})
print_log("Batch:", batch)
print_log("")
print_log("Results:", {k: (torch.isnan(v).any().item(), v.min().item(), v.max().item()) for k, v in
forward_results["state_dict"].items()})
print_log("Results:", {k: (torch.isnan(v).any().item(), v.min().item(), v.max().item()) for k, v in
forward_results["intensities"].items()})
print_log("Results:", {k: (torch.isnan(v).any().item(), v.min().item(), v.max().item()) for k, v in
forward_results["sample_intensities"].items()})
print_log("Results:", forward_results)
print_log("")
print_log("========================")
print_log("")
print_log("Set embeddings: ")
if torch.isnan(model.channel_embedding.weight.data).any():
print('Detect NaN values in embedding parameters.')
print(model.channel_embedding.weight.data)
if torch.isinf(model.channel_embedding.weight.data).any():
print('Detect inf values in embedding parameters.')
print(model.channel_embedding.weight.data)
print_log("")
print_log("Model parameters: ")
for name, param in model.named_parameters():
if torch.isnan(param.data).any():
print(f'Detect NaN values in {name} parameters.')
print(param.data)
if torch.isinf(param.data).any():
print(f'Detect inf values in {name} parameters.')
print(param.data)
print_log("========================")
input()
return loss_results, gradients_ratio_mark_to_time
def train_epoch(args, model, optimizer, lr_scheduler, dataloader, epoch_number, gradients_ratio_mark_to_time, print_gradient=True):
model.train()
total_losses = defaultdict(lambda: 0.0)
data_len = len(dataloader)
for i, batch in enumerate(dataloader):
batch_loss, gradients_ratio_mark_to_time \
= train_step(args, model, optimizer, lr_scheduler, batch, epoch_number, print_gradient, gradients_ratio_mark_to_time)
print_gradient = False
for k, v in batch_loss.items():
total_losses[k] += v.item()
if (((i + 1) % args.log_interval == 0) or ((i + 1 <= 5) and (epoch_number <= 1)) or
((i + 1) % args.log_interval != 0 and (i + 1) == data_len)):
items_to_print = [("LR", lr_scheduler.get_lr())]
items_to_print.extend([(k, v / (i+1)) for k, v in total_losses.items()])
print_results(args, items_to_print, epoch_number, i + 1, data_len, True)
return {k: v / data_len for k, v in total_losses.items()}
def eval_epoch(args, model, eval_dataloader, epoch_number, num_samples=150):
model.eval()
with torch.no_grad():
total_losses = defaultdict(lambda: 0.0)
data_len = len(eval_dataloader)
for i, batch in enumerate(eval_dataloader):
batch_loss, results = forward_pass(args, batch, model, sample_timestamps=None, num_samples=num_samples)
for k, v in batch_loss.items():
total_losses[k] += v.item()
print_results(args, [(k, v / data_len) for k, v in total_losses.items()], epoch_number, i + 1, data_len, False)
return {k: v / data_len for k, v in total_losses.items()}
if __name__ == "__main__":
file_suffix = datetime.now().strftime('%m_%d_%Y_%H_%M_%S')
print_log("Getting arguments.")
args = get_args(file_suffix)
print_log("Setting seed.")
set_random_seed(args)
print_log("Setting up dataloaders.")
train_dataloader, valid_dataloader, test_dataloader = get_data(args)
print_log("Setting up model, optimizer, and learning rate scheduler.")
model, optimizer, lr_scheduler = setup_model_and_optim(args, len(train_dataloader))
if not args.poisson:
report_model_stats(model)
if args.finetune:
epoch = load_checkpoint(args, model)
else:
epoch = 0
original_epoch = epoch
print_log("Starting training.")
results = {"valid": [], "train": [], "test": []}
last_valid_ll = -float('inf')
gradients_ratio_mark_to_time = []
epsilon = 0.03
pbar = tqdm(total=args.train_epochs)
while epoch < args.train_epochs or args.early_stop:
results["train"].append(train_epoch(args, model, optimizer, lr_scheduler, train_dataloader, epoch + 1, gradients_ratio_mark_to_time))
if args.do_valid and ((epoch + 1) % args.valid_epochs == 0):
new_valid = eval_epoch(args, model, valid_dataloader, epoch + 1)
results["valid"].append(new_valid)
if args.early_stop:
if new_valid["log_likelihood"] - last_valid_ll < epsilon:
break
last_valid_ll = new_valid["log_likelihood"]
if ((epoch + 1) % args.save_epochs == 0):
save_checkpoint(args, model, optimizer, lr_scheduler, epoch + 1)
if (epoch + 1) % args.save_epochs == 0:
with open(f"{args.checkpoint_path}/{args.set_assumption}_train_results.pickle", 'wb') as f:
pickle.dump(results, f)
epoch += 1
pbar.update(1)
pbar.close()
if args.save_epochs > 0 and original_epoch != epoch and epoch % args.save_epochs != 0:
save_checkpoint(args, model, optimizer, lr_scheduler, epoch)
else:
model.get_poisson_statistics(train_dataloader)
epoch = 0
save_checkpoint(args, model, optimizer, lr_scheduler, epoch)
results = {"valid": [], "train": [], "test": []}
results["train"].append(eval_epoch(args, model, train_dataloader, epoch + 1, num_samples=500))
results["valid"].append(eval_epoch(args, model, valid_dataloader, epoch + 1, num_samples=500))
if args.do_valid:
reps = 5
for _ in range(reps):
test_results = eval_epoch(args, model, test_dataloader, epoch + 1, num_samples=500)
results["test"].append(test_results)
del model
del optimizer
del lr_scheduler
del train_dataloader
del valid_dataloader
del test_dataloader
torch.cuda.empty_cache()
with open(f"{args.checkpoint_path}/{args.set_assumption}_train_results.pickle", 'wb') as f:
pickle.dump(results, f)
# print(results)