diff --git a/R/ResultFlagsIndependent.R b/R/ResultFlagsIndependent.R index 3dcc4eb9..5b92a1dd 100644 --- a/R/ResultFlagsIndependent.R +++ b/R/ResultFlagsIndependent.R @@ -1256,8 +1256,6 @@ TADA_FindPotentialDuplicatesMultipleOrgs <- function(.data, dist_buffer = 100, # group by date, time, characteristic, and rounded result value and determine the number of # organizations that have those same row values, and filter to those summary rows with more than # one organization - - # HRM note 12/31/24 - pick up work here, some issues w/ TADA.NearbySiteGroup dups_sum <- dupsprep %>% dplyr::group_by(ActivityStartDate, ActivityStartTime.Time, TADA.CharacteristicName, ActivityTypeCode, roundRV, TADA.MonitoringLocationIdentifier, diff --git a/R/Utilities.R b/R/Utilities.R index c39b4521..8631dcc2 100644 --- a/R/Utilities.R +++ b/R/Utilities.R @@ -96,7 +96,7 @@ utils::globalVariables(c( "TADA.MonitoringLocationIdentifier.New", "TADA.NearbySites.Flag", "CountSites", "Group", "Matrix", "n_id", "OrgRank", "rank.default", "Site", "TADA.LatitudeMeasure.New", "TADA.LongitudeMeasure.New", "TADA.MonitoringLocationName.New", - "TADA.MonitoringLocationTypeName.New" + "TADA.MonitoringLocationTypeName.New", "df_number" )) # global variables for tribal feature layers used in TADA_OverviewMap in Utilities.R @@ -905,7 +905,8 @@ TADA_FindNearbySites <- function(.data, dist_buffer = 100, dplyr::group_by(NHD.nhdplusid) %>% dplyr::mutate(n_id = length(TADA.MonitoringLocationIdentifier)) %>% dplyr::filter(n_id > 1) %>% - dplyr::ungroup() + dplyr::ungroup() %>% + dplyr::filter(!is.na(NHD.nhdplusid)) # remove intermediate object rm(nhd_catchments)