-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path3.Hybrid_inference.py
293 lines (248 loc) Β· 10.7 KB
/
3.Hybrid_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import torch
import torch.nn as nn
import torch.nn.functional as F
from copy import deepcopy
from torch.nn.utils.rnn import pad_sequence
from utils.reparam_module import ReparamModule
import numpy as np
import random
from tqdm import tqdm
from argparse import ArgumentParser
from utils import normal_initialization
from module.layers import SeqPoolingLayer
K = 5
class ConditionEncoder(nn.Module):
def __init__(self, K) -> None:
super().__init__()
transformer_layer = nn.TransformerEncoderLayer(
d_model=64,
nhead=2,
dim_feedforward=256,
dropout=0.5,
activation='gelu',
layer_norm_eps=1e-12,
batch_first=True,
)
self.encoder = nn.TransformerEncoder(
encoder_layer=transformer_layer,
num_layers=2,
)
self.condition_layer = nn.Sequential(
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, K),
)
self.pooling_layer = SeqPoolingLayer('mean')
self.tau = 1
def forward(self, trm_input, src_mask, memory_key_padding_mask, src_seqlen):
trm_out = self.encoder(
src=trm_input,
mask=src_mask, # BxLxD
src_key_padding_mask=memory_key_padding_mask,
)
trm_out = self.pooling_layer(trm_out, src_seqlen) # BD
condition = self.condition_layer(trm_out) # BK
condition = F.gumbel_softmax(condition, tau=self.tau, dim=-1) # BK
self.condition4loss = condition
self.tau = max(self.tau * 0.995, 0.1)
return condition
class Generator(nn.Module):
def __init__(self) -> None:
super().__init__()
# self.item_embedding = nn.Embedding(num_item + 2, 64, padding_idx=0)
# self.item_embedding_decoder = nn.Embedding(num_item + 2, 64, padding_idx=0)
self.transformer = nn.Transformer(
d_model=64,
nhead=2,
num_encoder_layers=2,
num_decoder_layers=2,
dim_feedforward=256,
dropout=0.5,
activation='gelu',
layer_norm_eps=1e-12,
batch_first=True,
)
self.condition_linear = nn.Sequential(
nn.Linear(64, 64 * K),
nn.ReLU(),
nn.Linear(64 * K, 64 * K)
)
self.dropout = nn.Dropout(0.5)
self.position_embedding = torch.nn.Embedding(50, 64)
self.condition_encoder = ConditionEncoder(K)
self.device = 'cuda'
self.apply(normal_initialization)
self.load_pretrained()
def load_pretrained(self):
path = os.path.join(args.root_path, 'pre-trained_embedding.ckpt')
# path = path_dict[dataset_name]
saved = torch.load(path, map_location='cpu')
pretrained = saved['parameters']['item_embedding.weight']
pretrained = torch.cat([
pretrained,
nn.init.normal_(torch.zeros(2, 64), std=0.02)
])
self.item_embedding = nn.Embedding.from_pretrained(pretrained, padding_idx=0, freeze=False)
self.item_embedding_decoder = self.item_embedding
def condition_mask(self, logits, src):
mask = torch.zeros_like(logits, device=logits.device, dtype=torch.bool)
mask = mask.scatter(-1, src.unsqueeze(-2).repeat(1, mask.shape[1], 1), 1)
logits = torch.masked_fill(logits, ~mask, -torch.inf)
return logits
def forward(self, src, tgt, src_mask, tgt_mask,
src_padding_mask,
tgt_padding_mask,
memory_key_padding_mask,
src_seqlen,
tgt_seqlen,
):
position_ids = torch.arange(src.size(1), dtype=torch.long, device=self.device)
position_ids = position_ids.reshape(1, -1)
src_position_embedding = self.position_embedding(position_ids)
src_emb = self.dropout(self.item_embedding(src) + src_position_embedding)
memory = self.transformer.encoder(src_emb, src_mask, src_padding_mask)
B, L, D = memory.shape
memory = self.condition_linear(memory).reshape(B, L, K, D)
position_ids = torch.arange(tgt.size(1), dtype=torch.long, device=self.device)
position_ids = position_ids.reshape(1, -1)
tgt_position_embedding = self.position_embedding(position_ids)
tgt_emb = self.dropout(self.item_embedding(tgt) + tgt_position_embedding)
condition = self.condition_encoder(tgt_emb, tgt_mask, tgt_padding_mask, tgt_seqlen) # BK
condition = condition.reshape(B, 1, K, 1)
memory_cond = (memory * condition).sum(-2)
outs = self.transformer.decoder(tgt_emb, memory_cond, tgt_mask, None, tgt_padding_mask, memory_key_padding_mask)
logits = outs @ self.item_embedding_decoder.weight.T
logits = self.condition_mask(logits, src)
return logits
def encode(self, src, src_mask):
position_ids = torch.arange(src.size(1), dtype=torch.long, device=self.device)
position_ids = position_ids.reshape(1, -1)
src_position_embedding = self.position_embedding(position_ids)
src_emb = self.dropout(self.item_embedding(src) + src_position_embedding)
return self.transformer.encoder(src_emb, src_mask)
def set_condition(self, condition):
self.condition = condition
def decode(self, tgt, memory, tgt_mask):
B, L, D = memory.shape
memory = self.condition_linear(memory).reshape(B, L, K, D)[:, :, self.condition]
position_ids = torch.arange(tgt.size(1), dtype=torch.long, device=self.device)
position_ids = position_ids.reshape(1, -1)
tgt_position_embedding = self.position_embedding(position_ids)
tgt_emb = self.dropout(self.item_embedding(tgt) + tgt_position_embedding)
return self.transformer.decoder(tgt_emb, memory, tgt_mask)
def generate_square_subsequent_mask(sz):
mask = (torch.triu(torch.ones((sz, sz), device='cuda')) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, -100000).masked_fill(mask == 1, float(0.0))
return mask
def create_mask(src, tgt):
src_seq_len = src.shape[1]
tgt_seq_len = tgt.shape[1]
tgt_mask = generate_square_subsequent_mask(tgt_seq_len)
# src_mask = torch.zeros((src_seq_len, src_seq_len),device='cuda').type(torch.bool)
src_mask = generate_square_subsequent_mask(src_seq_len)
src_padding_mask = (src == 0)
tgt_padding_mask = (tgt == 0)
return src_mask, tgt_mask, src_padding_mask, tgt_padding_mask
def inference_mask(logits, src, ys):
mask = torch.zeros_like(logits, device=logits.device, dtype=torch.bool)
mask = mask.scatter(-1, src, 1)
mask = mask.scatter(-1, ys, 0)
logits = torch.masked_fill(logits, ~mask, -torch.inf)
return logits
def inference_mask_generative(logits, src, ys):
mask = torch.ones_like(logits, device=logits.device, dtype=torch.bool)
mask = mask.scatter(-1, ys, 0)
logits = torch.masked_fill(logits, ~mask, -torch.inf)
return logits
def greedy_decode(model, src, src_mask, max_len, start_symbol):
src = src.to('cuda')
src_mask = src_mask.to('cuda')
memory = model.encode(src, src_mask)
ys = torch.ones(1, 1).fill_(start_symbol).type(torch.long).to('cuda')
for i in range(max_len-1):
memory = memory.to('cuda')
tgt_mask = (generate_square_subsequent_mask(ys.size(1))
.type(torch.bool)).to('cuda')
out = model.decode(ys, memory, tgt_mask)
prob = out[:, -1] @ model.item_embedding_decoder.weight.T
if random.random() > 1 or i <= 1:
prob = inference_mask(prob, src, ys)
else:
prob = inference_mask_generative(prob, src, ys)
_, next_word = torch.max(prob, dim=-1)
next_word = next_word.item()
ys = torch.cat([ys,
torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1)
if next_word == EOS:
break
return ys
def translate(model: torch.nn.Module, src):
model.eval()
src = src.reshape(1, -1)
num_tokens = src.shape[1]
src_mask = (torch.zeros(num_tokens, num_tokens)).type(torch.bool)
tgt_tokens = greedy_decode(
model, src, src_mask, max_len=25, start_symbol=SOS).flatten()
return tgt_tokens
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--root_path', type=str, default='./dataset/amazon-toys/toy/', help='The path to the dataset.')
parser.add_argument('--ckpt_name', type=str, default="regenerator.pth", help='The name of pretrained regenerator')
parser.add_argument('--begin', '-b', type=int, default=0, help='Used for multi-processing. Beginning of the inference.')
parser.add_argument('--end', '-e', type=int, default=1000000, help='Used for multi-processing. End of the inference.')
parser.add_argument('--gpu', type=int, default=0)
args = parser.parse_args()
begin = args.begin * 5000
end = args.end * 5000
import os
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
dataset_name = args.root_path.split('/')[-2] # e.g., 'toy' in './dataset/amazon-toys/toy/'
num_item_dict = {
'toy': 11925,
'sport': 18358,
'beauty': 12102,
'yelp': 20034,
}
num_item = num_item_dict[dataset_name]
SOS = num_item
EOS = num_item + 1
model = Generator().to('cuda')
model.load_state_dict(torch.load(os.path.join(args.root_path, args.ckpt_name)))
def preprocess(seq):
return torch.tensor([SOS] + seq + [EOS], device='cuda')
original_data = torch.load(os.path.join(args.root_path, 'train.pth'))
seqlist = [_[1][:_[3]] + [_[2][_[3] - 1]] for _ in original_data]
seqlist = [preprocess(_) for _ in seqlist]
ori_pattern = torch.load(os.path.join(args.root_path, 'patterns.pth'))
filtered_sequences = []
for i in range(K):
model.set_condition(i)
for seq in tqdm(seqlist[begin:end]):
rst = translate(model, seq)
filtered_sequences.append(rst)
train_set = set()
for pattern in filtered_sequences:
seq = pattern.tolist()[1:-1]
train_set.add(tuple(seq))
max_seq_len = 50
def truncate_or_pad(seq):
cur_seq_len = len(seq)
if cur_seq_len > max_seq_len:
return seq[-max_seq_len:]
else:
return seq + [0] * (max_seq_len - cur_seq_len)
train_list = []
for _ in train_set:
seq_len = sum([a != 0 for a in list(_)[:-1]])
if seq_len == 0:
continue
train_list.append([
1,
truncate_or_pad(list(_)[:-1]),
truncate_or_pad(list(_)[1:]),
seq_len,
[1] * max_seq_len,
[0] * max_seq_len,
])
out_path = os.path.join(args.root_path, 'train_regen.pth')
torch.save(original_data + ori_pattern + train_list, out_path)