-
Notifications
You must be signed in to change notification settings - Fork 5
/
extractMatch.py
195 lines (145 loc) · 5.37 KB
/
extractMatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import argparse
import numpy as np
import imageio
import torch
from tqdm import tqdm
import time
import scipy
import scipy.io
import scipy.misc
import os
import sys
from lib.model_test import D2Net
from lib.utils import preprocess_image
from lib.pyramid import process_multiscale
import cv2
import matplotlib.pyplot as plt
from PIL import Image
from skimage.feature import match_descriptors
from skimage.measure import ransac
from skimage.transform import ProjectiveTransform, AffineTransform
import pydegensac
parser = argparse.ArgumentParser(description='Feature extraction script')
parser.add_argument('imgs', type=str, nargs=2)
parser.add_argument(
'--preprocessing', type=str, default='caffe',
help='image preprocessing (caffe or torch)'
)
parser.add_argument(
'--model_file', type=str,
help='path to the full model'
)
parser.add_argument(
'--no-relu', dest='use_relu', action='store_false',
help='remove ReLU after the dense feature extraction module'
)
parser.set_defaults(use_relu=True)
parser.add_argument(
'--sift', dest='use_sift', action='store_true',
help='Show sift matching as well'
)
parser.set_defaults(use_sift=False)
def extract(image, args, model, device):
if len(image.shape) == 2:
image = image[:, :, np.newaxis]
image = np.repeat(image, 3, -1)
input_image = preprocess_image(
image,
preprocessing=args.preprocessing
)
with torch.no_grad():
keypoints, scores, descriptors = process_multiscale(
torch.tensor(
input_image[np.newaxis, :, :, :].astype(np.float32),
device=device
),
model,
scales=[1]
)
keypoints = keypoints[:, [1, 0, 2]]
feat = {}
feat['keypoints'] = keypoints
feat['scores'] = scores
feat['descriptors'] = descriptors
return feat
def rordMatching(image1, image2, feat1, feat2, matcher="BF"):
if(matcher == "BF"):
t0 = time.time()
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
matches = bf.match(feat1['descriptors'], feat2['descriptors'])
matches = sorted(matches, key=lambda x:x.distance)
t1 = time.time()
print("Time to extract matches: ", t1-t0)
print("Number of raw matches:", len(matches))
match1 = [m.queryIdx for m in matches]
match2 = [m.trainIdx for m in matches]
keypoints_left = feat1['keypoints'][match1, : 2]
keypoints_right = feat2['keypoints'][match2, : 2]
np.random.seed(0)
t0 = time.time()
H, inliers = pydegensac.findHomography(keypoints_left, keypoints_right, 10.0, 0.99, 10000)
t1 = time.time()
print("Time for ransac: ", t1-t0)
n_inliers = np.sum(inliers)
print('Number of inliers: %d.' % n_inliers)
inlier_keypoints_left = [cv2.KeyPoint(point[0], point[1], 1) for point in keypoints_left[inliers]]
inlier_keypoints_right = [cv2.KeyPoint(point[0], point[1], 1) for point in keypoints_right[inliers]]
placeholder_matches = [cv2.DMatch(idx, idx, 1) for idx in range(n_inliers)]
draw_params = dict(matchColor = (0,255,0),
singlePointColor = (255,0,0),
# matchesMask = matchesMask,
flags = 0)
image3 = cv2.drawMatches(image1, inlier_keypoints_left, image2, inlier_keypoints_right, placeholder_matches, None, **draw_params)
plt.figure(figsize=(20, 20))
plt.imshow(image3)
plt.axis('off')
plt.show()
def siftMatching(img1, img2):
img1 = np.array(cv2.cvtColor(np.array(img1), cv2.COLOR_BGR2RGB))
img2 = np.array(cv2.cvtColor(np.array(img2), cv2.COLOR_BGR2RGB))
# surf = cv2.xfeatures2d.SURF_create(100)
surf = cv2.xfeatures2d.SIFT_create()
kp1, des1 = surf.detectAndCompute(img1, None)
kp2, des2 = surf.detectAndCompute(img2, None)
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1,des2,k=2)
good = []
for m, n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1, 2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1, 2)
model, inliers = pydegensac.findHomography(src_pts, dst_pts, 10.0, 0.99, 10000)
n_inliers = np.sum(inliers)
print('Number of inliers: %d.' % n_inliers)
inlier_keypoints_left = [cv2.KeyPoint(point[0], point[1], 1) for point in src_pts[inliers]]
inlier_keypoints_right = [cv2.KeyPoint(point[0], point[1], 1) for point in dst_pts[inliers]]
placeholder_matches = [cv2.DMatch(idx, idx, 1) for idx in range(n_inliers)]
image3 = cv2.drawMatches(img1, inlier_keypoints_left, img2, inlier_keypoints_right, placeholder_matches, None)
cv2.imshow('Matches', image3)
cv2.waitKey(0)
src_pts = np.float32([ inlier_keypoints_left[m.queryIdx].pt for m in placeholder_matches ]).reshape(-1, 2)
dst_pts = np.float32([ inlier_keypoints_right[m.trainIdx].pt for m in placeholder_matches ]).reshape(-1, 2)
return src_pts, dst_pts
if __name__ == '__main__':
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
args = parser.parse_args()
model = D2Net(
model_file=args.model_file,
use_relu=args.use_relu,
use_cuda=use_cuda
)
image1 = np.array(Image.open(args.imgs[0]))
image2 = np.array(Image.open(args.imgs[1]))
print('--\nRoRD\n--')
feat1 = extract(image1, args, model, device)
feat2 = extract(image2, args, model, device)
print("Features extracted.")
rordMatching(image1, image2, feat1, feat2, matcher="BF")
if(args.use_sift):
print('--\nSIFT\n--')
siftMatching(image1, image2)