-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModules.py
228 lines (201 loc) · 8.03 KB
/
Modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import json
import networkx as nx
import matplotlib.pyplot as plt
import itertools
import heapq
## first part
# This function read the input file and save it as a data variable
def loader(filename):
with open(filename) as data_file:
data = json.load(data_file)
return data
# Function for creating the dictionary with authors as a key and related publications.
def Author(file):
dictAuthor = {}
for i in range(len(file)):
for author in file[i]["authors"]:
try:
dictAuthor[author["author_id"]] += [(file[i]["id_publication_int"])]
except:
dictAuthor[author["author_id"]] = [(file[i]["id_publication_int"])]
return dictAuthor
# function for creating the dictionary with publications as a keys and authors as a values
def Publ(file):
dictPubl = {}
for i in range(len(file)):
for author in file[i]["authors"]:
try:
dictPubl[file[i]["id_publication_int"]] += [(author["author_id"])]
except:
dictPubl[file[i]["id_publication_int"]] = [(author["author_id"])]
return dictPubl
# function for creating the dictionary for conference as a key and authors as a values
def Conf(file):
dictConf = {}
for i in range(len(file)):
for author in file[i]["authors"]:
try:
dictConf[file[i]["id_conference_int"]] += [(author["author_id"])]
except:
dictConf[file[i]["id_conference_int"]] = [(author["author_id"])]
return dictConf
# function to create a graph - as a nodes are taken authors from the previously created dictionary dictAuthor
def createGraph(dictAuthor):
Gall = nx.Graph()
for k, v in dictAuthor.items():
Gall.add_node(k, id=v[0])
return Gall
# for computing the weights of edges with Jaccard similarity
def JaccardDistance(a,b):
num = (len(list(set(a)&set(b))))
den = len(list(set(a)|set(b)))
j = 1 - num/den
return j
# function for adding edges to the graph
def addEdges(dictPubl):
for k, v in dictPubl.items():
# edges are taken from created dictionary, because we want connect authors with their coworkers.
for i in itertools.combinations(v, 2): # all combinations between 2 values of v (author_id)
Gall.add_edge(i[0], i[1], weight=JaccardDistance(dictAuthor[i[0]], dictAuthor[i[1]]))
return Gall
# for plotting, but not used at the end
def draw_graph(graph):
nx.draw_networkx(graph)
plt.show()
## Second part
# for more information - see report.pdf
# plot the degree distribution
def degree(graph):
degree_sequence = sorted(nx.degree_centrality(graph),reverse=True)
plt.loglog(degree_sequence,'b-',marker='o')
plt.title("Degree rank plot")
plt.ylabel("Degree")
plt.xlabel("Rank")
plt.show()
# plot and compute closeness, which is represented in the histogram
def closeness(graph):
close_centrality = nx.closeness_centrality(graph)
values_centrality = [i for i in close_centrality.values()]
plt.hist(values_centrality,ec ='black',bins = 10, color="orange")
plt.title("Closeness rank plot")
plt.ylabel("Closeness")
plt.xlabel("Rank")
plt.show()
# plot and compute betweenness
def betweeness(graph):
bet = nx.betweenness_centrality(graph, weight= 'weight')
bet2 = sorted(list(bet.values()), reverse=True)
#values_betweeness = [i for i in bet.values()]
plt.hist(bet2,ec ='black',bins = 10, color="red")
plt.title("Betweeness rank plot")
plt.ylabel("Betweeness")
plt.xlabel("Rank")
plt.show()
# for computing hop distance, we used function from the package networkx, which does exactly what we want
# at the end, we plot the subgraph
def hop_distance(graph):
id_author = int(input('Please, give me an ID of the Author: '))
neighbor = int(input('Please, tell me, what distance of neighbors do you want?: '))
sub = nx.ego_graph(graph, id_author, radius = neighbor)
nx.draw_networkx(sub)
plt.show()
## third part
def dijkstra(graph, source, target):
visited = set()
heap_distance = []
INF = ((1<<63) - 1)//2 #((1 * 2**63)-1)//2
#initialization
try:
# in this loop, we initialize the "potential" of the nodes, 0 for the source and INF for all others, and we put them in heap_distance
for node in graph.nodes():
if node != source:
heapq.heappush(heap_distance, (INF, node))
else:
heapq.heappush(heap_distance, (0, node))
# check if the values are connected
if nx.has_path(graph, source, target):
while heap_distance:
wanted_distance, w = heapq.heappop(heap_distance) # wanted_distance became the new potential and w the node
if w == target:
break #found him!
#add node w onto visited list
visited.add(w)
# initialize neighbors list
nblist = []
for x in graph.neighbors(w):
# if neighbor of w is not just visited, we add it in nblist
if x not in visited:
nblist.append(x)
for nd in nblist:
# new_distance is the sum between wanted_distance and the attribute weight associated with edge (w,nd)
new_distance = wanted_distance + graph.get_edge_data(w, nd)['weight']
# update the new "potential" of nd in heap_distance as new_distance
heapq.heappush(heap_distance, (new_distance, nd))
return (wanted_distance)
else:
print ('You shall not path!!!')
except:
print('Choose node from graph, please!')
# function for group numbers, as an input takes graph and list of nodes we want to check
def three_b(Gall, nodes_list):
lst=[]
output={}
# with the help of the networx package, first we check if the nodes are connected or not
connected = sorted(nx.connected_components(Gall), key=len, reverse=True)
for i in range(len(connected)):
for node in Gall.node:
for node_l in nodes_list:
print("I' m examining these nodes: " + str((node,node_l)))
if ((node and node_l) in connected[i]):
try:
print("The nodes: " + str((node,node_l)) + " are connected with distance " + str(dijkstra(Gall,node_l)[node]))
lst.append(dijkstra_b(Gall,node_l)[node])
except:
print("No connected")
else:
print("The nodes are not connected")
for i in range(len(lst)):
output[node_l]=min(lst[i])
return output
# congregated function for whole parts
def function2a(Gall, dictConf):
a = int(input('Give me an ID of conference, please: '))
subgraph = Gall.subgraph(dictConf[a])
nx.draw_networkx(subgraph)
plt.show()
degree(subgraph)
closeness(subgraph)
betweeness(subgraph)
def function2b(Gall):
hop_distance(Gall)
def function3a(Gall):
Aris = 256176
another_guy = int(input('Who do you want to connect?(ID please): '))
print(dijkstra_a(Gall, Aris, another_guy))
def function3b(Gall):
nodes_list = list(map(int,input('Give me numbers (Example - 114691,7289): ').split(",")))
three_b(Gall, nodes_list)
# To run the first part automatically
data = loader('/Users/Dario/Desktop/Aris_Homeworks/AMD_Homework_4/full_dblp.json')
dictAuthor = Author(data)
dictPubl = Publ(data)
dictConf = Conf(data)
Gall = createGraph(dictAuthor)
Gall = addEdges(dictPubl)
#draw_graph(Gall)
# then ask user, what he wants...
n = 0
while n != 'save me':
n = input("Enter the number of part you want (2a, 2b, 3a, 3b) or type 'save me', if you want to quit: ")
if n == '2a':
function2a(Gall, dictConf)
elif n =='2b':
function2b(Gall)
elif n =='3a':
function3a(Gall)
elif n =='3b':
function3b(Gall)
elif n == 'save me':
print ('It was pleasure to meat you')
else:
print ('Choose another part, please')