-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_imp.py
475 lines (391 loc) · 20.2 KB
/
main_imp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
'''
main process for a Lottery Tickets experiments
'''
import os
import pdb
import time
import pickle
import random
import shutil
import argparse
import numpy as np
from copy import deepcopy
import matplotlib.pyplot as plt
import torch
import torch.optim
import torch.nn as nn
import torch.utils.data
import torch.nn.functional as F
import torchvision.models as models
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from advertorch.utils import NormalizeByChannelMeanStd
from pruner import *
from dataset.poisoned_cifar10 import PoisonedCIFAR10
from dataset.poisoned_cifar100 import PoisonedCIFAR100
from dataset.poisoned_rimagenet import RestrictedImageNet
from dataset.clean_label_cifar10 import CleanLabelPoisonedCIFAR10
from models.resnets import resnet20s
from models.model_zoo import *
from models.densenet import *
from models.vgg import *
from models.adv_resnet import resnet20s as robust_res20s
parser = argparse.ArgumentParser(description='PyTorch Lottery Tickets Experiments on Poison dataset')
##################################### Backdoor #################################################
parser.add_argument("--poison_ratio", type=float, default=0.01)
parser.add_argument("--patch_size", type=int, default=5, help="Size of the patch")
parser.add_argument("--random_loc", dest="random_loc", action="store_true", help="Is the location of the trigger randomly selected or not?")
parser.add_argument("--upper_right", dest="upper_right", action="store_true")
parser.add_argument("--bottom_left", dest="bottom_left", action="store_true")
parser.add_argument("--target", default=0, type=int, help="The target class")
parser.add_argument("--black_trigger", action="store_true")
parser.add_argument("--clean_label_attack", action="store_true")
parser.add_argument('--robust_model', type=str, default=None, help='checkpoint file')
##################################### Dataset #################################################
parser.add_argument('--data', type=str, default='../data', help='location of the data corpus')
parser.add_argument('--dataset', type=str, default='cifar10', help='dataset')
parser.add_argument('--input_size', type=int, default=32, help='size of input images')
##################################### General setting ############################################
parser.add_argument('--arch', type=str, default='resnet18', help='network architecture')
parser.add_argument('--seed', default=None, type=int, help='random seed')
parser.add_argument('--gpu', type=int, default=0, help='gpu device id')
parser.add_argument('--workers', type=int, default=2, help='number of workers in dataloader')
parser.add_argument('--resume', action="store_true", help="resume from checkpoint")
parser.add_argument('--checkpoint', type=str, default=None, help='checkpoint file')
parser.add_argument('--save_dir', help='The directory used to save the trained models', default=None, type=str)
##################################### Training setting #################################################
parser.add_argument('--batch_size', type=int, default=128, help='batch size')
parser.add_argument('--lr', default=0.1, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight_decay', default=5e-4, type=float, help='weight decay')
parser.add_argument('--epochs', default=200, type=int, help='number of total epochs to run')
parser.add_argument('--warmup', default=0, type=int, help='warm up epochs')
parser.add_argument('--print_freq', default=50, type=int, help='print frequency')
parser.add_argument('--decreasing_lr', default='100,150', help='decreasing strategy')
##################################### Pruning setting #################################################
parser.add_argument('--pruning_times', default=16, type=int, help='overall times of pruning')
parser.add_argument('--rate', default=0.2, type=float, help='pruning rate')
parser.add_argument('--prune_type', default='lt', type=str, help='IMP type (lt, pt or rewind_lt)')
parser.add_argument('--random_prune', action='store_true', help='whether using random prune')
parser.add_argument('--rewind_epoch', default=3, type=int, help='rewind checkpoint')
best_sa = 0
def main():
global args, best_sa
args = parser.parse_args()
for arg in vars(args):
print(arg, getattr(args, arg))
torch.cuda.set_device(int(args.gpu))
os.makedirs(args.save_dir, exist_ok=True)
if args.seed:
setup_seed(args.seed)
# prepare dataset
if args.dataset == 'cifar10':
print('Dataset = CIFAR10')
classes = 10
if args.clean_label_attack:
print('Clean Label Attack')
robust_model = robust_res20s(num_classes = classes)
robust_weight = torch.load(args.robust_model, map_location='cpu')
if 'state_dict' in robust_weight.keys():
robust_weight = robust_weight['state_dict']
robust_model.load_state_dict(robust_weight)
train_set = CleanLabelPoisonedCIFAR10(args.data, poison_ratio=args.poison_ratio, patch_size=args.patch_size,
random_loc=args.random_loc, upper_right=args.upper_right, bottom_left=args.bottom_left,
target=args.target, black_trigger=args.black_trigger, robust_model=robust_model)
else:
train_set = PoisonedCIFAR10(args.data, train=True, poison_ratio=args.poison_ratio, patch_size=args.patch_size,
random_loc=args.random_loc, upper_right=args.upper_right, bottom_left=args.bottom_left,
target=args.target, black_trigger=args.black_trigger)
clean_testset = PoisonedCIFAR10(args.data, train=False, poison_ratio=0, patch_size=args.patch_size,
random_loc=args.random_loc, upper_right=args.upper_right, bottom_left=args.bottom_left,
target=args.target, black_trigger=args.black_trigger)
poison_testset = PoisonedCIFAR10(args.data, train=False, poison_ratio=1, patch_size=args.patch_size,
random_loc=args.random_loc, upper_right=args.upper_right, bottom_left=args.bottom_left,
target=args.target, black_trigger=args.black_trigger)
train_dl = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True)
clean_test_dl = DataLoader(clean_testset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True)
poison_test_dl = DataLoader(poison_testset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True)
elif args.dataset == 'cifar100':
print('Dataset = CIFAR100')
classes = 100
train_set = PoisonedCIFAR100(args.data, train=True, poison_ratio=args.poison_ratio, patch_size=args.patch_size,
random_loc=args.random_loc, upper_right=args.upper_right, bottom_left=args.bottom_left,
target=args.target, black_trigger=args.black_trigger)
clean_testset = PoisonedCIFAR100(args.data, train=False, poison_ratio=0, patch_size=args.patch_size,
random_loc=args.random_loc, upper_right=args.upper_right, bottom_left=args.bottom_left,
target=args.target, black_trigger=args.black_trigger)
poison_testset = PoisonedCIFAR100(args.data, train=False, poison_ratio=1, patch_size=args.patch_size,
random_loc=args.random_loc, upper_right=args.upper_right, bottom_left=args.bottom_left,
target=args.target, black_trigger=args.black_trigger)
train_dl = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True)
clean_test_dl = DataLoader(clean_testset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True)
poison_test_dl = DataLoader(poison_testset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True)
elif args.dataset == 'rimagenet':
print('Dataset = Restricted ImageNet')
classes = 9
dataset = RestrictedImageNet(args.data)
train_dl, _, _ = dataset.make_loaders(workers=args.workers, batch_size=args.batch_size, poison_ratio=args.poison_ratio, target=args.target, patch_size=args.patch_size, black_trigger=args.black_trigger)
_, clean_test_dl = dataset.make_loaders(only_val=True, workers=args.workers, batch_size=args.batch_size, poison_ratio=0, target=args.target, patch_size=args.patch_size, black_trigger=args.black_trigger)
_, poison_test_dl = dataset.make_loaders(only_val=True, workers=args.workers, batch_size=args.batch_size, poison_ratio=1, target=args.target, patch_size=args.patch_size, black_trigger=args.black_trigger)
else:
raise ValueError('Unknow Datasets')
# prepare model
if args.dataset == 'rimagenet':
if args.arch == 'resnet18':
model = models.resnet18(num_classes=classes)
else:
raise ValueError('Unknow architecture')
else:
if args.arch == 'resnet18':
model = ResNet18(num_classes=classes)
elif args.arch == 'resnet20':
model = resnet20s(num_classes=classes)
elif args.arch == 'densenet100':
model = densenet_100_12(num_classes=classes)
elif args.arch == 'vgg16':
model = vgg16_bn(num_classes=classes)
else:
raise ValueError('Unknow architecture')
model.cuda()
criterion = nn.CrossEntropyLoss()
decreasing_lr = list(map(int, args.decreasing_lr.split(',')))
if args.prune_type == 'lt':
print('lottery tickets setting (rewind to the same random init)')
initalization = deepcopy(model.state_dict())
elif args.prune_type == 'pt':
print('lottery tickets from best dense weight')
initalization = None
elif args.prune_type == 'rewind_lt':
print('lottery tickets with early weight rewinding')
initalization = None
else:
raise ValueError('unknown prune_type')
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=decreasing_lr, gamma=0.1)
if args.resume:
print('resume from checkpoint {}'.format(args.checkpoint))
checkpoint = torch.load(args.checkpoint, map_location = torch.device('cuda:'+str(args.gpu)))
best_sa = checkpoint['best_sa']
start_epoch = checkpoint['epoch']
all_result = checkpoint['result']
start_state = checkpoint['state']
if start_state>0:
current_mask = extract_mask(checkpoint['state_dict'])
prune_model_custom(model, current_mask)
check_sparsity(model)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=decreasing_lr, gamma=0.1)
model.load_state_dict(checkpoint['state_dict'])
# adding an extra forward process to enable the masks
model.eval()
x_rand = torch.rand(1,3,args.input_size, args.input_size).cuda()
with torch.no_grad():
model(x_rand)
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
initalization = checkpoint['init_weight']
print('loading state:', start_state)
print('loading from epoch: ',start_epoch, 'best_sa=', best_sa)
else:
all_result = {}
all_result['train_ta'] = []
all_result['test_ta'] = []
all_result['poison_ta'] = []
start_epoch = 0
start_state = 0
print('######################################## Start Standard Training Iterative Pruning ########################################')
for state in range(start_state, args.pruning_times):
print('******************************************')
print('pruning state', state)
print('******************************************')
check_sparsity(model)
for epoch in range(start_epoch, args.epochs):
print(optimizer.state_dict()['param_groups'][0]['lr'])
acc = train(train_dl, model, criterion, optimizer, epoch)
if state == 0:
if (epoch+1) == args.rewind_epoch:
torch.save(model.state_dict(), os.path.join(args.save_dir, 'epoch_{}_rewind_weight.pt'.format(epoch+1)))
if args.prune_type == 'rewind_lt':
initalization = deepcopy(model.state_dict())
tacc = validate(clean_test_dl, model, criterion)
test_tacc = validate(poison_test_dl, model, criterion)
scheduler.step()
all_result['train_ta'].append(acc)
all_result['test_ta'].append(tacc)
all_result['poison_ta'].append(test_tacc)
# remember best prec@1 and save checkpoint
is_best_sa = tacc > best_sa
best_sa = max(tacc, best_sa)
save_checkpoint({
'state': state,
'result': all_result,
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_sa': best_sa,
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'init_weight': initalization
}, is_SA_best=is_best_sa, pruning=state, save_path=args.save_dir)
# plot training curve
plt.plot(all_result['train_ta'], label='train accuracy')
plt.plot(all_result['test_ta'], label='clean test accuracy')
plt.plot(all_result['poison_ta'], label='posion test accuracy')
plt.legend()
plt.savefig(os.path.join(args.save_dir, str(state)+'net_train.png'))
plt.close()
#report result
check_sparsity(model)
val_pick_best_epoch = np.argmax(np.array(all_result['test_ta']))
print('* best TA = {}, best PA = {}, Epoch = {}'.format(all_result['test_ta'][val_pick_best_epoch], all_result['poison_ta'][val_pick_best_epoch], val_pick_best_epoch+1))
all_result = {}
all_result['train_ta'] = []
all_result['test_ta'] = []
all_result['poison_ta'] = []
best_sa = 0
start_epoch = 0
if args.prune_type == 'pt':
print('* loading pretrained weight')
initalization = torch.load(os.path.join(args.save_dir, '0model_SA_best.pth.tar'), map_location = torch.device('cuda:'+str(args.gpu)))['state_dict']
#pruning and rewind
if args.random_prune:
print('random pruning')
pruning_model_random(model, args.rate)
else:
print('L1 pruning')
pruning_model(model, args.rate)
SA_after_pruning = validate(clean_test_dl, model, criterion)
PA_after_pruning = validate(poison_test_dl, model, criterion)
print('* SA after pruning = {}'.format(SA_after_pruning))
print('* PA after pruning = {}'.format(PA_after_pruning))
remain_weight = check_sparsity(model)
current_mask = extract_mask(model.state_dict())
remove_prune(model)
# weight rewinding
model.load_state_dict(initalization)
prune_model_custom(model, current_mask)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=decreasing_lr, gamma=0.1)
if args.rewind_epoch:
# learning rate rewinding
for _ in range(args.rewind_epoch):
scheduler.step()
def train(train_loader, model, criterion, optimizer, epoch):
losses = AverageMeter()
top1 = AverageMeter()
# switch to train mode
model.train()
start = time.time()
for i, (image, target) in enumerate(train_loader):
if epoch < args.warmup:
warmup_lr(epoch, i+1, optimizer, one_epoch_step=len(train_loader))
image = image.type(torch.FloatTensor)
image = image.cuda()
target = target.cuda()
# compute output
output_clean = model(image)
loss = criterion(output_clean, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
output = output_clean.float()
loss = loss.float()
# measure accuracy and record loss
prec1 = accuracy(output.data, target)[0]
losses.update(loss.item(), image.size(0))
top1.update(prec1.item(), image.size(0))
if i % args.print_freq == 0:
end = time.time()
print('Epoch: [{0}][{1}/{2}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Accuracy {top1.val:.3f} ({top1.avg:.3f})\t'
'Time {3:.2f}'.format(
epoch, i, len(train_loader), end-start, loss=losses, top1=top1))
start = time.time()
print('train_accuracy {top1.avg:.3f}'.format(top1=top1))
return top1.avg
def validate(val_loader, model, criterion):
"""
Run evaluation
"""
losses = AverageMeter()
top1 = AverageMeter()
# switch to evaluate mode
model.eval()
for i, (image, target) in enumerate(val_loader):
image = image.type(torch.FloatTensor)
image = image.cuda()
target = target.cuda()
# compute output
with torch.no_grad():
output = model(image)
loss = criterion(output, target)
output = output.float()
loss = loss.float()
# measure accuracy and record loss
prec1 = accuracy(output.data, target)[0]
losses.update(loss.item(), image.size(0))
top1.update(prec1.item(), image.size(0))
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Accuracy {top1.val:.3f} ({top1.avg:.3f})'.format(
i, len(val_loader), loss=losses, top1=top1))
print('valid_accuracy {top1.avg:.3f}'
.format(top1=top1))
return top1.avg
def save_checkpoint(state, is_SA_best, save_path, pruning, filename='checkpoint.pth.tar'):
filepath = os.path.join(save_path, str(pruning)+filename)
torch.save(state, filepath)
if is_SA_best:
shutil.copyfile(filepath, os.path.join(save_path, str(pruning)+'model_SA_best.pth.tar'))
def warmup_lr(epoch, step, optimizer, one_epoch_step):
overall_steps = args.warmup*one_epoch_step
current_steps = epoch*one_epoch_step + step
lr = args.lr * current_steps/overall_steps
lr = min(lr, args.lr)
for p in optimizer.param_groups:
p['lr']=lr
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def setup_seed(seed):
print('setup random seed = {}'.format(seed))
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
if __name__ == '__main__':
main()