-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathgs.py
272 lines (230 loc) · 11.6 KB
/
gs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import argparse, itertools, os, time
import numpy as np
import matplotlib.pyplot as plt
from skimage.io import imread, imsave
from skimage import img_as_ubyte
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torch.nn.functional as F
from PIL import Image
import torch
import torch.nn as nn
from models.models import Generator, Discriminator
from utils.utils import *
from utils.perceptual import *
from datasets.datasets import ImageDataset, PairedImageDataset
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', default='7')
parser.add_argument('--cpus', default=4)
parser.add_argument('--batch_size', '-b', default=8, type=int, help='mini-batch size')
parser.add_argument('--epochs', '-e', default=200, type=int, help='number of total epochs to run')
parser.add_argument('--lrw', type=float, default=1e-5, help='learning rate for G')
parser.add_argument('--lrgamma', type=float, default=1e-1, help='learning rate for gamma (pruning)')
parser.add_argument('--wd', type=float, default=1e-3, help='weight decay for G')
parser.add_argument('--momentum', default=0.5, type=float, help='momentum')
parser.add_argument('--dataset', type=str, default='horse2zebra', choices=['summer2winter_yosemite', 'horse2zebra'])
parser.add_argument('--task', type=str, default='A2B', choices=['A2B', 'B2A'])
parser.add_argument('--size', type=int, default=256, help='size of the data crop (squared assumed)')
parser.add_argument('--input_nc', type=int, default=3, help='number of channels of input data')
parser.add_argument('--output_nc', type=int, default=3, help='number of channels of output data')
parser.add_argument('--rho', type=float, default=0, help='l1 loss weight')
parser.add_argument('--beta', type=float, default=20, help='GAN loss weight')
parser.add_argument('--lc', default='vgg', choices=['vgg', 'mse'], help='G content loss. vgg: perceptual; mse: mse')
parser.add_argument('--quant', action='store_true', help='enable quantization (for both activation and weight)')
parser.add_argument('--resume', action='store_true', help='If true, resume from early stopped ckpt')
args = parser.parse_args()
if args.task == 'A2B':
source_str, target_str = 'A', 'B'
else:
source_str, target_str = 'B', 'A'
foreign_dir = './'
print(args)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
## results_dir:
method_str = ('GS8' if args.quant else 'GS32')
gamma_optimizer_str = 'sgd_mom%s_lrgamma%s' % (args.momentum, args.lrgamma)
W_optimizer_str = 'adam_lrw%s_wd%s' % (args.lrw, args.wd)
opt_str = 'e%d-b%d' % (args.epochs, args.batch_size)
loss_str = 'rho%s_beta%s_%s' % (args.rho, args.beta, args.lc)
results_dir = os.path.join('results', args.dataset, args.task, '%s_%s_%s_%s_%s' % (
method_str, loss_str, opt_str, gamma_optimizer_str, W_optimizer_str))
img_dir = os.path.join(results_dir, 'img')
pth_dir = os.path.join(results_dir, 'pth')
create_dir(img_dir), create_dir(pth_dir)
## Networks
# G:
netG = Generator(args.input_nc, args.output_nc, quant=args.quant).cuda()
# D:
netD = Discriminator(args.input_nc).cuda()
# param list:
parameters_G, parameters_D, parameters_gamma = [], [], []
for name, para in netG.named_parameters():
if 'weight' in name and para.ndimension() == 1:
parameters_gamma.append(para)
else:
parameters_G.append(para)
for name, para in netD.named_parameters():
# print(name, para.size(), para.ndimension())
parameters_D.append(para)
print('parameters_gamma:', len(parameters_gamma))
# Optimizers:
optimizer_gamma = torch.optim.SGD(parameters_gamma, lr=args.lrgamma, momentum=args.momentum)
optimizer_G = torch.optim.Adam(parameters_G, lr=args.lrw, weight_decay=args.wd, betas=(0.5, 0.999)) # lr=1e-3
optimizer_D = torch.optim.Adam(parameters_D, lr=args.lrw, weight_decay=args.wd, betas=(0.5, 0.999)) # lr=1e-3
# LR schedulers:
lr_scheduler_gamma = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer_gamma, args.epochs)
lr_scheduler_G = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer_G, args.epochs)
lr_scheduler_D = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer_D, args.epochs)
# load pretrained:
if args.resume:
last_epoch, loss_G_lst, loss_G_perceptual_lst, loss_G_GAN_lst, loss_D_lst, channel_number_lst = load_ckpt(
netG, netD,
optimizer_G, optimizer_D, optimizer_gamma,
lr_scheduler_G, lr_scheduler_D, lr_scheduler_gamma,
path=os.path.join(results_dir, 'pth', 'latest.pth')
)
start_epoch = last_epoch + 1
else:
if args.dataset == 'horse2zebra':
dense_model_folder = 'pretrained_dense_model_quant' if args.quant else 'pretrained_dense_model'
g_path = os.path.join(foreign_dir, dense_model_folder, args.dataset, 'pth', 'netG_%s_epoch_%d.pth' % (args.task, 199) )
netG.load_state_dict(torch.load(g_path))
print('load G from %s' % g_path)
d_path = os.path.join(foreign_dir, dense_model_folder, args.dataset, 'pth', 'netD_%s_epoch_%d.pth' % (target_str, 199) )
netD.load_state_dict(torch.load(d_path))
print('load D from %s' % d_path)
start_epoch = 0
loss_G_lst, loss_G_perceptual_lst, loss_G_GAN_lst, loss_D_lst, channel_number_lst = [], [], [], [], []
# Dataset loader: image shape=(256,256)
dataset_dir = os.path.join(foreign_dir, 'datasets', args.dataset)
soft_data_dir = os.path.join(foreign_dir, 'train_set_result', args.dataset)
transforms_ = [ transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) ] # (0,1) -> (-1,1)
dataloader = DataLoader(
PairedImageDataset(dataset_dir, soft_data_dir, transforms_=transforms_, mode=args.task),
batch_size=args.batch_size, shuffle=True, num_workers=args.cpus, drop_last=True)
# Inputs & targets memory allocation
Tensor = torch.cuda.FloatTensor
input_source = Tensor(args.batch_size, args.input_nc, args.size, args.size)
input_target = Tensor(args.batch_size, args.output_nc, args.size, args.size)
target_real = Variable(Tensor(args.batch_size).fill_(1.0), requires_grad=False)
target_fake = Variable(Tensor(args.batch_size).fill_(0.0), requires_grad=False)
fake_img_buffer = ReplayBuffer()
# perceptual loss models:
vgg = VGGFeature().cuda()
###### Training ######
print('dataloader:', len(dataloader)) # 1334
for epoch in range(start_epoch, args.epochs):
start_time = time.time()
netG.train(), netD.train()
# define average meters:
loss_G_meter, loss_G_perceptual_meter, loss_G_GAN_meter, loss_D_meter = \
AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
for i, batch in enumerate(dataloader):
# Set model input
input_img = Variable(input_source.copy_(batch[source_str])) # X
teacher_output_img = Variable(input_target.copy_(batch[target_str])) # Gt(X)
# print('input_img:', input_img.size(), torch.max(input_img), torch.min(input_img))
# print('teacher_output_img:', teacher_output_img.size(), torch.max(teacher_output_img), torch.min(teacher_output_img))
###### G ######
optimizer_G.zero_grad()
optimizer_gamma.zero_grad()
student_output_img = netG(input_img) # Gs(X)
# perceptual loss
if args.lc == 'vgg':
student_output_vgg_features = vgg(student_output_img)
teacher_output_vgg_features = vgg(teacher_output_img)
loss_G_perceptual, loss_G_content, loss_G_style = \
perceptual_loss(student_output_vgg_features, teacher_output_vgg_features)
elif args.lc == 'mse':
loss_G_perceptual = F.mse_loss(student_output_img, teacher_output_img)
# GAN loss (G part):
pred_student_output_img = netD(student_output_img)
loss_G_GAN = torch.nn.MSELoss()(pred_student_output_img, target_real)
# Total G loss
loss_G = args.beta * loss_G_perceptual + loss_G_GAN
loss_G.backward()
optimizer_G.step()
optimizer_gamma.step()
# append loss:
loss_G_meter.append(loss_G.item())
loss_G_perceptual_meter.append(loss_G_perceptual.item())
loss_G_GAN_meter.append(loss_G_GAN.item())
# proximal gradient for channel pruning:
current_lr = lr_scheduler_gamma.get_lr()[0]
for name, m in netG.named_modules():
if isinstance(m, nn.InstanceNorm2d) and m.weight is not None:
m.weight.data = soft_threshold(m.weight.data, th=float(args.rho) * float(current_lr))
if i % 50 == 0:
if args.lc == 'vgg':
out_str_G = 'epoch %d-%d-G: perceptual %.4f (content %.4f, style %.4f) | gamma lr %.4f' % (
epoch, i, loss_G_perceptual.data, loss_G_content.data, loss_G_style.data * 1e5, current_lr)
elif args.lc == 'mse':
out_str_G = 'epoch %d-%d-G: mse %.4f | gamma lr %.4f' % (
epoch, i, loss_G_perceptual.data, current_lr)
print(out_str_G)
###### End G ######
###### D ######
optimizer_D.zero_grad()
# real loss:
pred_teacher_output_img = netD(teacher_output_img)
loss_D_real = torch.nn.MSELoss()(pred_teacher_output_img, target_real)
# Fake loss
student_output_img_buffer_pop = fake_img_buffer.push_and_pop(student_output_img)
pred_student_output_img = netD(student_output_img_buffer_pop.detach())
loss_D_fake = torch.nn.MSELoss()(pred_student_output_img, target_fake)
# Total loss
loss_D = (loss_D_real + loss_D_fake)*0.5
loss_D.backward()
optimizer_D.step()
# append loss:
loss_D_meter.append(loss_D.item())
###### End D ######
## at the end of each epoch
netG.eval(), netG.eval()
# Update learning rates
lr_scheduler_G.step()
lr_scheduler_D.step()
lr_scheduler_gamma.step()
print('time: %.2f' % (time.time()-start_time))
print(args)
# plot training loss:
losses = {}
losses['loss_G'] = (loss_G_lst, loss_G_meter.avg)
losses['loss_G_perceptual'] = (loss_G_perceptual_lst, loss_G_perceptual_meter.avg)
losses['loss_G_GAN'] = (loss_G_GAN_lst, loss_G_GAN_meter.avg)
losses['loss_D'] = (loss_D_lst, loss_D_meter.avg)
for key in losses:
losses[key][0].append(losses[key][1])
plt.plot(losses[key][0])
plt.savefig(os.path.join(results_dir, '%s.png' % key))
plt.close()
if epoch % 10 == 0 or epoch == args.epochs - 1:
# save imgs:
images={'input_img': input_img, 'teacher_output_img': teacher_output_img, 'student_output_img': student_output_img}
for key in images:
img_np = images[key].detach().cpu().numpy()
img_np = np.moveaxis(img_np, 1, -1)
img_np = (img_np + 1) / 2 # (-1,1) -> (0,1)
img_big = fourD2threeD(img_np, n_row=4)
print(key, img_big.shape, np.amax(img_big), np.amin(img_big))
imsave(os.path.join(img_dir, 'epoch%d_%s.png' % (epoch, key)), img_as_ubyte(img_big))
if epoch % 20 == 0 or epoch == args.epochs - 1:
# Save models checkpoints
torch.save(netG.state_dict(), os.path.join(pth_dir, 'epoch%d_netG.pth' % epoch))
# TBD: save best FID
# channel number:
channel_number_lst.append(none_zero_channel_num(netG))
plt.plot(channel_number_lst)
plt.savefig(os.path.join(results_dir, 'channel_number.png'))
plt.close()
# save latest:
save_ckpt(epoch, netG, netD,
optimizer_G, optimizer_D, optimizer_gamma,
lr_scheduler_G, lr_scheduler_D, lr_scheduler_gamma,
loss_G_lst, loss_G_perceptual_lst, loss_G_GAN_lst, loss_D_lst, channel_number_lst,
path=os.path.join(pth_dir, 'latest.pth'))
###### End Training ######