-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathval.py
118 lines (93 loc) · 4.1 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import os
import argparse
import multiprocessing
multiprocessing.set_start_method("spawn", True)
from pathlib import Path
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from model import SAM_FNet50, SAM_FNet18, SAM_FNet34
from torchvision import transforms
from dataset import LPCDataset
from tqdm import tqdm
import numpy as np
from sklearn.metrics import classification_report
import pandas as pd
classes = {
0: 'normal',
1: 'benign',
2: 'tumor'
}
def count_metrics(plist, tlist, save_path):
pred_np = np.array(plist)
targets_np = np.array(tlist)
report = classification_report(targets_np, pred_np, digits=4)
print(report)
# Save the classification report string to a file
with open(save_path / 'classification_report.txt', 'w') as file:
file.write(report)
file.close()
def count_pred(data):
data_soft = F.softmax(data, dim=1)
_, predicted = torch.max(data_soft.data, 1)
return data_soft, predicted
def test(args, model, val_dataloaders, save_path):
model.eval()
preds = []
targets = []
output_scores_list = []
with torch.no_grad():
for idx, (input1, input2, labels, _, _) in tqdm(enumerate(val_dataloaders), total=len(val_dataloaders)):
input1, input2, labels = input1.cuda(), input2.cuda(), labels.cuda()
o_g, o_l, o_f, _, _, _ = model(input1, input2, labels)
if args.ensemble:
output = (o_g + o_l + o_f) / 3.0
else:
output = o_f
output, predicted = count_pred(output)
preds.extend(predicted.cpu().numpy())
targets.extend(labels.cpu().numpy())
output_scores_list.extend(output.cpu().numpy())
preds = [classes[x] for x in preds]
targets = [classes[x] for x in targets]
results = pd.DataFrame({'preds': preds, 'targets': targets})
for i in range(3):
results[f'class_{i}_score'] = [output_scores[i] for output_scores in output_scores_list]
results.to_csv(save_path / "results.csv", index=False, header=True)
count_metrics(preds, targets, save_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, default='./model_ours/weights/46_0.9646.pth')
parser.add_argument('--encoder', type=str, default='ResNet50', help="encoder name",
choices=['ResNet18', 'ResNet34', 'ResNet50'])
parser.add_argument('--dataset', type=str, default='dataset1')
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--img_size', type=int, default=256)
parser.add_argument('--ensemble', type=bool, default=True)
parser.add_argument('--save_path', type=str, default='./model_ours/')
parser.add_argument('--devices', type=str, default='0,1')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.devices
model_path = args.model_path
save_path = Path(args.save_path)
save_path = save_path / args.dataset
if not save_path.exists():
save_path.mkdir(parents=True, exist_ok=True)
if args.encoder == 'ResNet18':
model = SAM_FNet18(num_classes=args.num_classes, num_features=2, pretrained=False)
elif args.encoder == 'ResNet34':
model = SAM_FNet34(num_classes=args.num_classes, num_features=2, pretrained=False)
elif args.encoder == 'ResNet50':
model = SAM_FNet50(num_classes=args.num_classes, num_features=2, pretrained=False)
model.load_state_dict(torch.load(model_path))
model = model.cuda()
transforms_val = transforms.Compose([
transforms.Resize(args.img_size),
transforms.CenterCrop(args.img_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
test_dataset = LPCDataset(root=f'./datasets/{args.dataset}/global/test', transform=transforms_val)
print('The length of testing dataset', len(test_dataset))
test_dataloaders = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=8)
test(args, model, test_dataloaders, save_path)