-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfaces_train.py
54 lines (42 loc) · 1.85 KB
/
faces_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#pylint:disable=no-member
#we will use open cv's bulit in recognizer
import os
import cv2 as cv
import numpy as np
people = ['Bill Gates','Elon Musk','Jeff Bezoz','Kate Middleton','Leonardo Dicaprio','Taylor Swift']
DIR = r'C:\Users\hp\Desktop\photosTrain2\Faces\train'
haar_cascade = cv.CascadeClassifier('haar_face.xml')
# for i in os.listdir(r'C:\Users\hp\Desktop\photosTrain'):
# p.append(i)
# print(p)
features = []#features of the face
labels = []#whose face is it, numerical value basically index
#a function to travserse over every pic stored in the file
def create_train():
for person in people:#assining the folder
path = os.path.join(DIR, person)#Use of os.path.join() method to join various path components
label = people.index(person)#index of person in people list
#We are in the folder, now we have to loop over every pic
for img in os.listdir(path):
img_path = os.path.join(path,img)
img_array = cv.imread(img_path)
if img_array is None:
continue
gray = cv.cvtColor(img_array, cv.COLOR_BGR2GRAY)
faces_rect = haar_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=4)
for (x,y,w,h) in faces_rect:
faces_roi = gray[y:y+h, x:x+w]
features.append(faces_roi)
labels.append(label)
create_train()
print('Training done ---------------')
#print(f'Length of the features ={len(features)}')
#print(f'Length of the labels ={len(labels)}')
features = np.array(features, dtype='object')
labels = np.array(labels)
face_recognizer = cv.face.LBPHFaceRecognizer_create()
# Train the Recognizer on the features list and the labels list
face_recognizer.train(features,labels)
face_recognizer.save('face_trained.yml')
np.save('features.npy', features)
np.save('labels.npy', labels)