-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathrunCancerSVAE.py
85 lines (70 loc) · 2.84 KB
/
runCancerSVAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from keras.layers import Input, Dense
from keras.models import Model
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.cluster import k_means
from sklearn.metrics import silhouette_score, davies_bouldin_score
from sklearn.preprocessing import normalize
import time
from sklearn import metrics
from myUtils import *
from SVAEclass import VAE
import os
from keras import backend as K
def get_EM(datapath,resultpath):
omics1 = np.loadtxt('{}/log_exp_omics.txt'.format(datapath))
omics1 = np.transpose(omics1)
omics1 = normalize(omics1, axis=0, norm='max')
print(omics1.shape)
omics2 = np.loadtxt('{}/log_mirna_omics.txt'.format(datapath))
omics2 = np.transpose(omics2)
omics2 = normalize(omics2, axis=0, norm='max')
print(omics2.shape)
omics3 = np.loadtxt('{}/methy_omics.txt'.format(datapath))
omics3 = np.transpose(omics3)
omics3 = normalize(omics3, axis=0, norm='max')
print(omics3.shape)
omics = np.concatenate((omics1, omics2, omics3), axis=1)
print(omics.shape)
data = omics
input_dim = data.shape[1]
encoding1_dim = 3000
encoding2_dim = 300
middle_dim = 10
noise_factor = 0.1
dims = [encoding1_dim, encoding2_dim, middle_dim]
vae = VAE(data, dims)
vae.autoencoder.summary()
vae.train()
encoded_factors = vae.predict(data)
if not os.path.exists("{}/SVAE_FCTAE_EM.txt".format(resultpath)):
os.mknod("{}/SVAE_FCTAE_EM.txt".format(resultpath))
np.savetxt("{}/SVAE_FCTAE_EM.txt".format(resultpath), encoded_factors)
K.clear_session()
if __name__ == '__main__':
data_dir_list = []
result_dir_list = []
data_path = r"data/cancer"
result_path = r"result/cancer"
dir_or_files = os.listdir(data_path)
for dir_file in dir_or_files:
# 获取目录或者文件的路径
data_dir_file_path = os.path.join(data_path, dir_file)
result_dir_file_path = os.path.join(result_path, dir_file)
# 判断该路径为文件还是路径
if os.path.isdir(data_dir_file_path):
data_dir_list.append(data_dir_file_path)
if not os.path.exists(result_dir_file_path):
os.makedirs(result_dir_file_path)
result_dir_list.append(result_dir_file_path)
#print(data_dir_list)
#print(result_dir_list)
# data_dir_list=['data/cancer/breast', 'data/cancer/gbm', 'data/cancer/ovarian', 'data/cancer/sarcoma', 'data/cancer/lung', 'data/cancer/liver']
# result_dir_list=['result/cancer/breast', 'result/cancer/gbm', 'result/cancer/ovarian', 'result/cancer/sarcoma', 'result/cancer/lung', 'result/cancer/liver']
# for datapath,resultpath in zip(data_dir_list,result_dir_list):
# get_EM(datapath, resultpath)
datapath='data/cancer/gbm'
resultpath='result/cancer/gbm'
get_EM(datapath, resultpath)