-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloader.py
90 lines (83 loc) · 3.83 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import torch
from torch.utils.data import DataLoader
from models import *
from torchvision import datasets, transforms
def get_dataset(args):
model_type, dataset, channel, batch_size = args.model, args.dataset, args.channel, args.batch_size
if model_type == 'gan':
transform = transforms.Compose([
transforms.Resize(32),
transforms.ToTensor(),
])
else:
transform = transforms.Compose([
transforms.Resize(32),
transforms.ToTensor(),
transforms.Normalize((0.5,) * channel, (0.5,) * channel),
])
if dataset == 'MNIST':
loader = DataLoader(
datasets.MNIST('./dataset', download=False, transform=transform, train=True),
batch_size=batch_size, shuffle=True
)
val_loader = DataLoader(
datasets.MNIST('./dataset', download=False, transform=transform, train=False), batch_size=batch_size
)
elif dataset == 'CIFAR10':
loader = DataLoader(
datasets.CIFAR10('./dataset', download=False, transform=transform, train=True),
batch_size=batch_size, shuffle=True
)
val_loader = DataLoader(
datasets.CIFAR10('./dataset', download=False, transform=transform, train=False), batch_size=batch_size
)
else:
raise ValueError(f'Wrong dataset type :{dataset}')
return loader, val_loader
def get_model(args, device):
model_type = args.model
if model_type == 'gan':
discriminator = gan.get_disc_model(args).to(device)
generator = gan.get_gen_model(args).to(device)
elif model_type == 'dcgan':
discriminator = dcgan.get_disc_model(args).to(device)
generator = dcgan.get_gen_model(args).to(device)
elif model_type == 'dcgan_wl':
discriminator = dcgan_wl.get_disc_model(args).to(device)
generator = dcgan_wl.get_gen_model(args).to(device)
elif model_type == 'dcgan_sn':
discriminator = dcgan_sn.get_disc_model(args).to(device)
generator = dcgan_sn.get_gen_model(args).to(device)
elif model_type == 'dcgan_un':
discriminator = dcgan_un.get_disc_model(args).to(device)
generator = dcgan_un.get_gen_model(args).to(device)
elif model_type == 'dcgan_sa':
discriminator = dcgan_sa.get_disc_model(args).to(device)
generator = dcgan_sa.get_gen_model(args).to(device)
else:
raise ValueError(f'Wrong models type :{model_type}')
return discriminator, generator
def start_trainer(model_type, loader, val_loader, discriminator, generator, optim_disc, optim_gen, criterion, args,
device, global_epoch):
if model_type == 'gan':
gan.train(loader, val_loader, discriminator, generator, optim_disc, optim_gen, criterion, args, device,
global_epoch)
elif model_type == 'dcgan':
dcgan.train(loader, val_loader, discriminator, generator, optim_disc, optim_gen, criterion, args, device,
global_epoch)
elif model_type == 'dcgan_wl':
args.c_lambda = 10
args.crit_repeats = 5
dcgan_wl.train(loader, val_loader, discriminator, generator, optim_disc, optim_gen, args, device, global_epoch)
elif model_type == 'dcgan_sn':
dcgan_sn.train(loader, val_loader, discriminator, generator, optim_disc, optim_gen, criterion, args, device,
global_epoch)
elif model_type == 'dcgan_un':
args.unrolled_steps = 10
dcgan_un.train(loader, val_loader, discriminator, generator, optim_disc, optim_gen, criterion, args, device,
global_epoch)
elif model_type == 'dcgan_sa':
dcgan_sa.train(loader, val_loader, discriminator, generator, optim_disc, optim_gen, criterion, args, device,
global_epoch)
else:
raise ValueError(f'Wrong models type :{model_type}')