-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path10 Countries_Firecounts_Final.py
61 lines (49 loc) · 1.92 KB
/
10 Countries_Firecounts_Final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# -*- coding: utf-8 -*-
"""
@author: Vinoj
"""
import os
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Define the list of countries including India
countries = ['Brazil', 'Canada', 'China', 'France', 'Germany', 'India', 'Italy', 'Mexico', 'Russia', 'USA']
# Define custom colors for each country
custom_colors = {
'Brazil': 'green',
'Canada': 'red',
'China': 'gold',
'France': 'blue',
'Germany': 'black',
'India': '#FF9933', # Saffron
'Italy': '#7FFF7F', # Light green
'Mexico': 'teal',
'Russia': 'silver',
'USA': '#800020' # HEX color code for burgundy
}
# Set the style for the plot
sns.set(style="whitegrid")
plt.figure(figsize=(12, 6), dpi=300) # Set the dpi parameter for increased resolution
# Iterate through each country
for country in countries:
# Construct the file path
file_path = f'C:\\Users\\Vinoj\\OneDrive\\Desktop\\Ashoka_PEDP\\Assignments\\Assignment 7.2\\Data_2018-2023\\{country}_fires_data_2018_2023.csv'
# Check if the file exists
if os.path.exists(file_path):
# Load data from CSV file
df = pd.read_csv(file_path)
# Convert the 'datetime' column to datetime format with the correct format
df['datetime'] = pd.to_datetime(df['datetime'], format='%d-%m-%Y')
# Plot the time series data for each country with a different color, line style, and without markers
sns.lineplot(x='datetime', y='co2_emission_estimate', data=df, label=country, color=custom_colors[country], marker=None, linestyle='-')
# Set labels and title
plt.xlabel('Time')
plt.ylabel('CO2 emission estimate')
plt.title('Time Series of CO2 Emission Estimate in Different Countries')
# Rotate x-axis labels for better readability
plt.xticks(rotation=45)
# Show legend
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
# Display the plot
plt.tight_layout()
plt.show()