forked from VDIGPKU/DynamicDet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_dynamic_thres.py
115 lines (101 loc) · 4.67 KB
/
get_dynamic_thres.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import argparse
import os
import logging
from pathlib import Path
from threading import Thread
import yaml
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
from models.yolo import Model
from utils.datasets import create_dataloader
from utils.general import check_dataset, check_file, check_img_size, set_logging, colorstr
from utils.torch_utils import select_device
logger = logging.getLogger(__name__)
def get_thres(data,
cfg=None,
weight=None,
batch_size=32,
imgsz=640,
augment=False,
half_precision=True):
set_logging()
device = select_device(opt.device, batch_size=batch_size)
if isinstance(data, str):
is_coco = data.endswith('coco.yaml')
with open(data) as f:
data = yaml.load(f, Loader=yaml.SafeLoader)
check_dataset(data) # check
nc = int(data['nc']) # number of classes
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for [email protected]:0.95
niou = iouv.numel()
# Load model
model = Model(cfg, ch=3, nc=nc) # create
state_dict = torch.load(weight, map_location='cpu')['model']
model.load_state_dict(state_dict, strict=True) # load
model.to(device)
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weight)) # report
for p in model.parameters():
p.requires_grad = False
model.float().fuse().eval()
# Compatibility updates
for m in model.modules():
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
m.inplace = True # pytorch 1.7.0 compatibility
elif type(m) is nn.Upsample:
m.recompute_scale_factor = None # torch 1.11.0 compatibility
gs = max(int(model.stride.max()), 32) # grid size (max stride)
imgsz = check_img_size(imgsz, s=gs) # check img_size
model.get_score = True
# Half
half = device.type != 'cpu' and half_precision # half precision only supported on CUDA
if half:
model.half()
# Dataloader
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True,
prefix=colorstr(f'{task}: '))[0]
score_list = []
for batch_i, (img, _, _, _) in enumerate(tqdm(dataloader)):
img = img.to(device, non_blocking=True)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
with torch.no_grad():
# Run model
cur_score = model(img, augment=augment) # inference and training outputs
score_list.append(cur_score.item())
thres = ['0']
for i in list(range(10, 100, 10)):
thres.append(str(np.percentile(score_list, i)))
thres.append('1')
return thres
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
parser.add_argument('--weight', type=str, default='', help='model.pt path(s)')
parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
parser.add_argument('--batch-size', type=int, default=1, help='size of each image batch')
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--task', default='val', help='train, val, test')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--project', default='runs/test', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
opt.single_cls = False
opt.data = check_file(opt.data) # check file
print(opt)
if opt.task in ('train', 'val', 'test'): # run normally
thres = get_thres(opt.data, opt.cfg, opt.weight, opt.batch_size, opt.img_size, opt.augment)
print()
print('***************************************************')
print(' '.join(thres))
for idx, thr in enumerate(thres):
print('First: {}%\tSecond: {}%\tThreshold: {}'.format(100 - idx * 10, idx * 10, thr))
print('***************************************************')
else:
raise NotImplementedError