-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathconfig.py
160 lines (137 loc) · 5.61 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import logging
import os
from pathlib import Path
import arrow
import torch
cur_dir = os.path.dirname(os.path.abspath(__file__))
root_dir = cur_dir
data_dir = os.path.join(root_dir, "data")
raw_data_dir = os.path.join(data_dir, 'raw_data')
output_dir = os.path.join(root_dir, "output")
ckpt_dir = os.path.join(output_dir, "ckpt")
result_dir = os.path.join(output_dir, 'result')
# 原始数据
mention2ent_txt = os.path.join(raw_data_dir, 'PKUBASE', 'pkubase-mention2ent.txt')
kb_triples_txt = os.path.join(raw_data_dir, 'PKUBASE', 'pkubase-complete2.txt')
# 问答原始数据
raw_train_txt = os.path.join(raw_data_dir, 'ccks_2020_7_4_Data', 'task1-4_train_2020.txt')
valid_question_txt = os.path.join(raw_data_dir, 'ccks_2020_7_4_Data', 'task1-4_valid_2020.questions')
class DataConfig(object):
"""
原始数据经过处理后生成的数据
"""
word2id_json = os.path.join(data_dir, 'word2id.json')
q_entity2id_json = os.path.join(data_dir, 'q_entity2id.json')
a_entity2id_json = os.path.join(data_dir, 'a_entity2id.json')
#
data_csv = os.path.join(data_dir, 'data.csv') # 训练数据做了一点格式转换
#
mention2ent_json = os.path.join(data_dir, 'mention2ent.json')
ent2mention_json = os.path.join(data_dir, 'ent2mention.json')
entity2id = os.path.join(data_dir, 'entity2id.json')
id2entity_pkl = os.path.join(data_dir, 'id2entity.pkl')
relation2id = os.path.join(data_dir, 'relation2id.json')
id2relation_pkl = os.path.join(data_dir, 'id2relation.pkl')
# count
entity2count_json = os.path.join(data_dir, 'entity2count.json')
relation2count_json = os.path.join(data_dir, 'relation2count.json')
mention2count_json = os.path.join(data_dir, 'mention2count.json')
#
lac_custom_dict_txt = os.path.join(data_dir, 'lac_custom_dict.txt')
lac_attr_custom_dict_txt = os.path.join(data_dir, 'lac_attr_custom_dict.txt')
jieba_custom_dict = os.path.join(data_dir, 'jieba_custom_dict.json')
# graph_pkl = os.path.join(data_dir, 'graph.pkl')
graph_entity_csv = os.path.join(data_dir, 'graph_entity.csv') # 图谱导入
graph_relation_csv = os.path.join(data_dir, 'graph_relation.csv') # 图谱导入
entity2types_json = os.path.join(data_dir, 'entity2type.json')
entity2attrs_json = os.path.join(data_dir, 'entity2attr.json')
all_attrs_json = os.path.join(data_dir, 'all_attrs.json') # 所有属性
#
lac_model_pkl = os.path.join(data_dir, 'lac_model.pkl')
# EntityScore model
entity_score_model_pkl = os.path.join(data_dir, 'entity_score_model.pkl')
entity_score_data_pkl = os.path.join(data_dir, 'entity_score_data.pkl')
#
neo4j_query_cache = os.path.join(data_dir, 'neo4j_query_cache.json')
#
relation_score_sample_csv = os.path.join(data_dir, 'sample.csv')
@staticmethod
def get_relation_score_sample_csv(data_type, neg_rate):
if data_type == 'train':
file_path = Path(DataConfig.relation_score_sample_csv).with_name(f'train.1_{neg_rate}.csv')
else:
file_path = Path(DataConfig.relation_score_sample_csv).with_name('test.csv')
return str(file_path)
class TorchConfig(object):
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device = torch.device('cpu')
# device = "cpu"
gpu_nums = torch.cuda.device_count()
multi_gpu = True
gradient_accumulation_steps = 1
clip_grad = 2
class Parms(object):
#
learning_rate = 0.001
# #
# min_epoch_nums = 1
# max_epoch_nums = 10
# #
# embedding_dim = 128 # entity enbedding dim, relation enbedding dim , word enbedding dim
max_len = 50 # max sentence length
# batch_size = 32
# # subtask = 'general'
# test_batch_size = 128
class Config(TorchConfig, DataConfig, Parms):
pretrained_model_name_or_path = os.path.join(data_dir, 'bert-base-chinese-pytorch') # 'bert-base-chinese'
# load_pretrain = True
# rand_seed = 1234
# load_model_mode = "min_loss"
# load_model_mode = "max_step"
# load_model_mode = "max_acc" # mrr
#
# train_count = 1000 # TODO for debug
# test_count = 10 # 10*2*13589
class ResultSaver(object):
"""输出文件管理;自动生成新文件名;避免覆盖
自动查找已存在的文件
"""
def __init__(self, find_exist_path=False):
os.makedirs(result_dir, exist_ok=True)
self.find_exist_path = find_exist_path
def _get_new_path(self, file_name):
date_str = arrow.now().format("YYYYMMDD")
# date_str = '20200609' #临时修改
num = 1
path = os.path.join(result_dir, f"{date_str}-{num}-{file_name}")
while os.path.isfile(path):
path = os.path.join(result_dir, f"{date_str}-{num}-{file_name}")
num += 1
return path
def _find_paths(self, file_name):
paths = [str(_path) for _path in
Path(result_dir).rglob(f'*{file_name}')]
_paths = sorted(paths, reverse=True)
return _paths
def get_path(self, file_name):
if self.find_exist_path:
path = self._find_paths(file_name)
else:
path = self._get_new_path(file_name)
logging.info(f'* get path: {path}')
return path
@property
def train_result_csv(self):
file_name = 'train_answer_result.csv'
path = self.get_path(file_name)
return path
@property
def valid_result_csv(self):
file_name = 'valid_result.csv'
path = self.get_path(file_name)
return path
@property
def submit_result_txt(self):
file_name = 'submit_result.txt'
path = self.get_path(file_name)
return path