forked from rstager/ARoboCarController
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
106 lines (93 loc) · 3.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import keras
from keras.layers import Conv2D,Dropout,MaxPooling2D,Dense,Flatten,BatchNormalization
from keras.models import Sequential,Model,Input
from keras.losses import mean_absolute_error,mean_squared_error
from keras.constraints import maxnorm
from keras.optimizers import Adam
from keras.utils.io_utils import HDF5Matrix
from keras.preprocessing import *
from keras.callbacks import ModelCheckpoint
import numpy as np
import matplotlib.pyplot as plt
import h5py
import os
import project
filename=os.path.join(project.datadir,"robocar.hdf5")
model_filename=os.path.join(project.modeldir,"model_1.h5")
input = h5py.File(filename, 'r')
imagesin=input['frontcamera']
controlsin=input['steering.throttle']
nsamples=imagesin.shape[0]
ntrain=int(nsamples*0.9)
nval=nsamples-ntrain
#imagesin = HDF5Matrix(filename, 'frontcamera',start=0,end=1000)
#controlsin = HDF5Matrix(filename, 'steering.throttle',start=0,end=1000)
width=160 #should add these to h5 parameters
height=90
print(imagesin.shape,controlsin.shape)
print(np.mean(imagesin[0:100]))
print(np.std(imagesin[0:100]))
print(np.mean(controlsin[0,0:100]))
#datagen = ImageDataGenerator(
# featurewise_center=True,
# featurewise_std_normalization=True)
def createCNNModel():
# Create the model
inp = Input((height,width, 3))
model = Sequential()
model.add(Conv2D(32,(3, 3), input_shape=(height,width, 3), padding='same', activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(32,(3, 3), padding='same', activation='relu'))
model.add(Conv2D(32,(3, 3), padding='same', activation='relu'))
model.add(Conv2D(32,(3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D((2,2)))
model.add(Dropout(0.2))
model.add(Conv2D(32,(3, 3), padding='same', activation='relu'))
model.add(Conv2D(32,(3, 3), padding='same', activation='relu'))
model.add(Conv2D(32,(3, 3), padding='same', activation='relu'))
model.add(Conv2D(32,(3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D((2,2)))
model.add(Dropout(0.2))
model.add(Conv2D(32,(3, 3), padding='same', activation='relu'))
model.add(Conv2D(32,(3, 3), padding='same', activation='relu'))
model.add(Conv2D(64,(3, 3), padding='same', activation='relu'))
model.add(MaxPooling2D((2,2)))
model.add(Dropout(0.2))
model.add(Conv2D(64,(3, 3), padding='same', activation='relu'))
model.add(Conv2D(64,(3, 3), padding='same', activation='relu'))
model.add(Conv2D(64,(3, 3), padding='same', activation='relu'))
model.add(Dropout(0.2))
model.add(Flatten())
x=Dense(32, activation='relu')(model(inp))
steering_model=Dense(1, activation='linear',name="steering")(x)
x=Dense(32, activation='relu')(model(inp))
throttle_model=Dense(1, activation='linear',name="throttle")(x)
combined_model=Model(inp,[steering_model,throttle_model])
# Compile models
opt = Adam(lr=0.00001)
combined_model.compile(loss='mean_squared_error', optimizer=opt)
return combined_model
def generator(Xh5,yh5):
m=Xh5.shape[0]
s=0
while 1:
e=s+32
X=Xh5[s:e]
y=yh5[s:e]
y=[yh5[s:e,0],yh5[s:e,1]]
yield (X,y)
s +=32
if s+32 > m:
s = 0
# create our CNN model
model = createCNNModel()
print("CNN Model created.")
print(np.mean(imagesin[100:120]),np.std(imagesin[100:120]))
model.fit_generator(generator(imagesin[:ntrain],controlsin[:ntrain]), steps_per_epoch=100 ,verbose=1,
validation_data=generator(imagesin[ntrain:],controlsin[ntrain:]),validation_steps=10,
epochs=10,callbacks=[ModelCheckpoint("model_1e.h5")])
print("evaluate")
print(model.evaluate_generator(generator(imagesin[ntrain:],controlsin[ntrain:]), 1))
#print("Predict")
#print(model.predict_generator(generator(imagesin[ntrain:],controlsin[ntrain:]), 10))
model.save(model_filename)