-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmanipulate.py
714 lines (668 loc) · 22.2 KB
/
manipulate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
import pymysql
from functools import reduce
from PyQt5 import QtCore, QtGui, QtWidgets
from PyQt5.QtGui import QPixmap
from functools import partial
import sys
import math
import time
import copy
#连接数据库
conn=pymysql.connect(host = "localhost",user = "root",passwd = "xxxxxxxxxxxx",db = "for_practice")
#创建游标
cur=conn.cursor()
#建立倒排索引
#table每一行都是一个posting
#wfidf的倒排索引
cur.execute("select * from wfidf")
wf_table=[]
hanlist=[]
for row in cur.fetchall():
r=[row[1],[]]
hanlist.append(row[1])
for j in range(2,len(row)):
if row[j]>0:
r[1].append([j-1,row[j]])
wf_table.append(r)
#求第二范式函数
def norm(doc):
sum=0
for value in doc:
sum=sum+value*value
return sum**0.5
#计算一行的idf
def df_cal(row):
s=0
for i in range(2,272):
if row[i]!=0:
s=s+1
return s
#读入countmatrix,形成doc向量
#采用平方和的方法归一化
cur.execute("select * from countmatrix")
docs=[]
df=[]
sum_N=0 #统计所有文档的总字数
for i in range(270):
docs.append([])
for row in cur.fetchall():
df.append(df_cal(row))
for i in range(2,272):
docs[i-2].append(row[i])
sum_N=sum_N+row[i]
idf=[]
for i in range(len(df)):
idf.append(math.log10(270/df[i]))
dfN=[] #计算term项的在所有文档中的概率
for i in range(len(df)):
dfN.append(df[i]/sum_N)
max_docs=copy.deepcopy(docs) #采用最大值归一化方法
norm_docs=copy.deepcopy(docs) #采用平方归一化方法
for k in range(len(norm_docs)):
under=norm(norm_docs[k])
for i in range(len(norm_docs[k])):
norm_docs[k][i]=norm_docs[k][i]*idf[i]/under
norm_docs[0][0]=8
for k in range(len(max_docs)):
under=max(max_docs[k])
for i in range(len(max_docs[k])):
max_docs[k][i]=max_docs[k][i]*idf[i]/under
'''
布尔模型相关
'''
#两个posting的AND操作
def AND(p1,p2):
i=0
j=0
ans=[]
while i<len(p1) and j<len(p2):
if p1[i][0]==p2[j][0]:
ans.append([p1[i][0],p1[i][1]+p2[j][1]])
i=i+1
j=j+1
elif p1[i][0]<p2[j][0]:
i=i+1
else:
j=j+1
return ans
#两个posting的OR操作
def OR(p1,p2):
i=0
j=0
ans=[]
while i<len(p1) and j<len(p2):
if p1[i][0]==p2[j][0]:
ans.append([p1[i][0],p1[i][1]+p2[j][1]])
i=i+1
j=j+1
elif p1[i][0]<p2[j][0]:
ans.append(p1[i])
i=i+1
else:
ans.append(p2[j])
j=j+1
while i<len(p1):
ans.append(p1[i])
i=i+1
while j<len(p2):
ans.append(p2[j])
j=j+1
return ans
#两个posting的ANDNOT操作
def ANDNOT(p1,p2):
i=0
j=0
ans=[]
while i<len(p1) and j<len(p2):
if p1[i][0]==p2[j][0]:
i=i+1
j=j+1
elif p1[i][0]<p2[j][0]:
ans.append(p1[i])
i=i+1
else:
j=j+1
while i<len(p1):
ans.append(p1[i])
i=i+1
return ans
#多个posting的AND操作
def AND_MU(plist):
templist=sorted(plist,key=len)
return reduce(AND,templist)
#多个posting的OR操作
def OR_MU(plist):
templist=sorted(plist,key=len,reverse=True)
return reduce(OR,templist)
'''
对term串的处理,即处理一行汉字的AND
返回一个posting
'''
def termsHandle(termlist,table):
plist=[]
for value in termlist:
flag=False
for row in table:
if row[0]==value:
plist.append(row[1])
flag=True
if flag==False:
return []
return AND_MU(plist)
'''
对常规搜索的支持,即只包含语句和空格的处理
'''
#辅助ranking函数
def nodeRanking(node):
return node[1]
def oriSentence(sentence,table):
sentence=sentence+" "
tl=""
plist=[]
for c in sentence:
if c!=" ":
tl=tl+c
else:
if tl!="":
plist.append(termsHandle(tl,table))
tl=""
posting=OR_MU(plist)
return sorted(posting,key=nodeRanking,reverse=True)
'''
对布尔表达式子的支持,符号包括AND,OR,ANDNOT或&,|,-及括号(,)
'''
#改为标准表达式的辅助函数
def to_regularBool(sentence):
s1=sentence.replace("ANDNOT","-")
s2=s1.replace("AND","&")
s3=s2.replace("OR","|")
return s3
#转为前缀表达式
def to_suffix(sentence):
stack=[]
queue=[]
tl=""
for c in sentence:
if c=="(":
if(tl!=""):
queue.append(tl)
tl=""
stack.append(c)
continue
elif c==")":
if(tl!=""):
queue.append(tl)
tl=""
while(stack[len(stack)-1]!="("):
queue.append(stack[len(stack)-1])
stack.pop()
stack.pop()
continue
elif c=="&" or c=="|":
if(tl!=""):
queue.append(tl)
tl=""
if len(stack)==0:
stack.append(c)
elif stack[len(stack)-1]=="-" or stack[len(stack)-1]=="(":
stack.append(c)
else:
while(len(stack)!=0 and stack[len(stack)-1]!="-" and stack[len(stack)-1]!="("):
queue.append(stack[len(stack)-1])
stack.pop()
stack.append(c)
elif c=="-":
if(tl!=""):
queue.append(tl)
tl=""
while(len(stack)!=0 and stack[len(stack)-1]!="("):
queue.append(stack[len(stack)-1])
stack.pop()
stack.append(c)
else:
tl=tl+c
if(tl!=""):
queue.append(tl)
while(len(stack)!=0):
queue.append(stack[len(stack)-1])
stack.pop()
return queue
#整合布尔表达式的计算
def boolSentence(sentence,table):
sentence=to_regularBool(sentence)
sentence=to_suffix(sentence)
for i in range(len(sentence)):
value=sentence[i]
if value!="&" and value!="|" and value!="-":
sentence[i]=termsHandle(value,table)
stack=[]
for c in sentence:
if c=="&":
r=stack[-1]
stack.pop()
l=stack[-1]
stack.pop()
stack.append(AND(l,r))
elif c=="|":
r=stack[-1]
stack.pop()
l=stack[-1]
stack.pop()
stack.append(OR(l,r))
elif c=="-":
r=stack[-1]
stack.pop()
l=stack[-1]
stack.pop()
stack.append(ANDNOT(l,r))
else:
stack.append(c)
return sorted(stack[0],key=nodeRanking,reverse=True)
'''
向量模型相关
'''
#将查询请求改为加权向量形式
def to_vector(sentence,hanlist,idf):
vector_q=[]
for han in hanlist:
vector_q.append(sentence.count(han))
under=norm(vector_q)
if under==0:
return vector_q
for i in range(len(vector_q)):
vector_q[i]=vector_q[i]*idf[i]/under
return vector_q
#计算两个向量间的距离
def vec_distance(v1,v2):
sums=0
for i in range(len(v1)):
sums=sums+v1[i]*v2[i]
return sums
#计算所有文档和查询的距离,返回文档编号-距离矩阵(已排序)
def distances(docs,vq):
d=[]
for i in range(len(docs)):
d.append([i+1,vec_distance(docs[i],vq)])
return sorted(d,key=nodeRanking,reverse=True)
#考虑非零元素的简化算法
def simplified_distances(docs,vq):
d=[]
for i in range(1,271):
d.append([i,0])
for i in range(len(vq)):
if vq[i]!=0:
for j in range(270):
if docs[j][i]!=0:
d[j][1]=d[j][1]+docs[j][i]*vq[i]
return sorted(d,key=nodeRanking,reverse=True)
'''
概率模型相关
'''
#计算ri
r=[]
for i in range(len(df)):
if df[i]!=270:
r.append(df[i]/270)
else:
r.append(0.00000000000000000000000000001)
#给出pi
p=[]
for i in range(len(df)):
p.append(0.5)
#pi的第二种方法
p2=[]
for i in range(len(df)):
p.append((df[i]+0.5)/271)
#计算ci的函数
def c_cal(r,p):
c=[]
for i in range(len(r)):
print(p[i],r[i])
c.append(math.log10(p[i]*(1-r[i])/((1-p[i])*r[i])))
return c
c=c_cal(r,p)
#把查询语句变为01向量
def to_01vector(sentence,hanlist):
vector_q=[]
for han in hanlist:
if sentence.count(han)!=0:
vector_q.append(1)
else:
vector_q.append(0)
return vector_q
#根据查询计算每篇doc的RSV并排序
def RSV_ranking(docs,qv,c):
RSVs=[]
for i in range(1,271):
RSVs.append([i,0])
for i in range(len(qv)):
if qv[i]!=0:
for j in range(270):
if docs[j][i]!=0:
RSVs[j][1]=RSVs[j][1]+c[i]
return sorted(RSVs,key=nodeRanking,reverse=True)
'''
语言模型相关
'''
#语言模型排序函数
def MLE_ranking(docs,qv,lamb,dfN):
dposting=[]
for i in range(1,271):
dposting.append([i,1])
ff=False
for i in range(len(qv)):
if qv[i]!=0:
if ff==False:
ff=True
for j in range(270):
dposting[j][1]=dposting[j][1]*(lamb*docs[j][i]+(1-lamb)*dfN[i])
if ff==False:
for i in range(270):
dposting[i][1]=0
return sorted(dposting,key=nodeRanking,reverse=True)
'''
ui界面相关
'''
#ui的类
class Ui_MainWindow(object):
def setupUi(self, MainWindow):
MainWindow.setObjectName("MainWindow")
MainWindow.resize(800, 700)
self.centralwidget = QtWidgets.QWidget(MainWindow)
self.centralwidget.setObjectName("centralwidget")
self.tabWidget = QtWidgets.QTabWidget(self.centralwidget)
self.tabWidget.setGeometry(QtCore.QRect(0, 0, 1000, 1000))
self.tabWidget.setMaximumSize(QtCore.QSize(800, 16777215))
self.tabWidget.setObjectName("tabWidget")
self.tab = QtWidgets.QWidget()
self.tab.setObjectName("tab")
self.lineEdit = QtWidgets.QLineEdit(self.tab)
self.lineEdit.setGeometry(QtCore.QRect(100,70, 450, 41))
self.lineEdit.setObjectName("lineEdit")
self.pushButton = QtWidgets.QPushButton(self.tab)
self.pushButton.setGeometry(QtCore.QRect(450,70, 100, 41))
self.pushButton.setObjectName("pushButton")
self.label = QtWidgets.QLabel(self.tab)
self.label.setGeometry(QtCore.QRect(15, 60, 70, 40))
self.label.setObjectName("label")
self.label_2 = QtWidgets.QLabel(self.tab)
self.label_2.setGeometry(QtCore.QRect(15, 125, 70, 40))
self.label_2.setObjectName("label_2")
self.listWidget = QtWidgets.QListWidget(self.tab)
self.listWidget.setGeometry(QtCore.QRect(100, 120, 615, 500))
self.listWidget.setObjectName("listWidget")
self.tabWidget.addTab(self.tab, "")
self.tab_2 = QtWidgets.QWidget()
self.tab_2.setObjectName("tab_2")
self.label_3 = QtWidgets.QLabel(self.tab_2)
self.label_3.setGeometry(QtCore.QRect(15, 60, 70, 40))
self.label_3.setObjectName("label_3")
self.lineEdit_2 = QtWidgets.QLineEdit(self.tab_2)
self.lineEdit_2.setGeometry(QtCore.QRect(100,70, 450, 41))
self.lineEdit_2.setObjectName("lineEdit_2")
self.pushButton_2 = QtWidgets.QPushButton(self.tab_2)
self.pushButton_2.setGeometry(QtCore.QRect(450,70, 100, 41))
self.pushButton_2.setObjectName("pushButton_2")
self.label_4 = QtWidgets.QLabel(self.tab_2)
self.label_4.setGeometry(QtCore.QRect(15, 125, 70, 40))
self.label_4.setObjectName("label_4")
self.listWidget_2 = QtWidgets.QListWidget(self.tab_2)
self.listWidget_2.setGeometry(QtCore.QRect(100, 120, 615, 500))
self.listWidget_2.setObjectName("listWidget_2")
self.tabWidget.addTab(self.tab_2, "")
self.tab_3 = QtWidgets.QWidget()
self.tab_3.setObjectName("tab_3")
self.label_5 = QtWidgets.QLabel(self.tab_3)
self.label_5.setGeometry(QtCore.QRect(15, 60, 70, 40))
self.label_5.setObjectName("label_5")
self.lineEdit_3 = QtWidgets.QLineEdit(self.tab_3)
self.lineEdit_3.setGeometry(QtCore.QRect(100,70, 450, 41))
self.lineEdit_3.setObjectName("lineEdit_3")
self.pushButton_3 = QtWidgets.QPushButton(self.tab_3)
self.pushButton_3.setGeometry(QtCore.QRect(450,70, 100, 41))
self.pushButton_3.setObjectName("pushButton_3")
self.label_6 = QtWidgets.QLabel(self.tab_3)
self.label_6.setGeometry(QtCore.QRect(15, 125, 70, 40))
self.label_6.setObjectName("label_6")
self.listWidget_3 = QtWidgets.QListWidget(self.tab_3)
self.listWidget_3.setGeometry(QtCore.QRect(100, 120, 615, 500))
self.listWidget_3.setObjectName("listWidget_3")
self.tabWidget.addTab(self.tab_3, "")
self.tab_4 = QtWidgets.QWidget()
self.tab_4.setObjectName("tab_4")
self.label_7 = QtWidgets.QLabel(self.tab_4)
self.label_7.setGeometry(QtCore.QRect(15, 60, 70, 40))
self.label_7.setObjectName("label_7")
self.lineEdit_4 = QtWidgets.QLineEdit(self.tab_4)
self.lineEdit_4.setGeometry(QtCore.QRect(100,70, 450, 41))
self.lineEdit_4.setObjectName("lineEdit_4")
self.pushButton_4 = QtWidgets.QPushButton(self.tab_4)
self.pushButton_4.setGeometry(QtCore.QRect(450,70, 100, 41))
self.pushButton_4.setObjectName("pushButton_4")
self.label_8 = QtWidgets.QLabel(self.tab_4)
self.label_8.setGeometry(QtCore.QRect(15, 125, 70, 40))
self.label_8.setObjectName("label_8")
self.listWidget_4 = QtWidgets.QListWidget(self.tab_4)
self.listWidget_4.setGeometry(QtCore.QRect(100, 120, 615, 500))
self.listWidget_4.setObjectName("listWidget_4")
self.tabWidget.addTab(self.tab_4, "")
MainWindow.setCentralWidget(self.centralwidget)
self.menubar = QtWidgets.QMenuBar(MainWindow)
self.menubar.setGeometry(QtCore.QRect(0, 0, 409, 22))
self.menubar.setObjectName("menubar")
MainWindow.setMenuBar(self.menubar)
self.statusbar = QtWidgets.QStatusBar(MainWindow)
self.statusbar.setObjectName("statusbar")
MainWindow.setStatusBar(self.statusbar)
self.label_9 = QtWidgets.QLabel(self.centralwidget)
self.label_9.setGeometry(QtCore.QRect(550,-70, 300, 400))
self.label_9.setObjectName("label_9")
pix = QPixmap('logo.png')
self.label_9.setPixmap(pix)
#响应回车事件
self.lineEdit.returnPressed.connect(partial(convert1,ui,wf_table))
self.lineEdit_2.returnPressed.connect(partial(convert2,ui,hanlist,idf))
self.lineEdit_3.returnPressed.connect(partial(convert3,ui,hanlist,norm_docs))
self.lineEdit_4.returnPressed.connect(partial(convert4,ui,hanlist,norm_docs))
self.retranslateUi(MainWindow)
self.tabWidget.setCurrentIndex(3)
QtCore.QMetaObject.connectSlotsByName(MainWindow)
def retranslateUi(self, MainWindow):
_translate = QtCore.QCoreApplication.translate
MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow"))
self.pushButton.setText(_translate("MainWindow", "搜索"))
self.label.setText(_translate("MainWindow", "搜索内容"))
self.label_2.setText(_translate("MainWindow", "搜索结果"))
self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab), _translate("MainWindow", "布尔模型"))
self.label_3.setText(_translate("MainWindow", "搜索内容"))
self.pushButton_2.setText(_translate("MainWindow", "搜索"))
self.label_4.setText(_translate("MainWindow", "搜索结果"))
self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_2), _translate("MainWindow", "向量模型"))
self.label_5.setText(_translate("MainWindow", "搜索内容"))
self.pushButton_3.setText(_translate("MainWindow", "搜索"))
self.label_6.setText(_translate("MainWindow", "搜索结果"))
self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_3), _translate("MainWindow", "概率模型"))
self.label_7.setText(_translate("MainWindow", "搜索内容"))
self.pushButton_4.setText(_translate("MainWindow", "搜索"))
self.label_8.setText(_translate("MainWindow", "搜索结果"))
self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_4), _translate("MainWindow", "语言模型"))
#显示函数
flag=[False]
def convert1(ui,table):
ui.listWidget.clear()
input = ui.lineEdit.text()
start=time.time()
flag=False
for value in input:
if value=="&" or value=="|" or value=="-" or value=="(" or value==")" or "A" in value or "O" in value:
flag=True
if flag:
posting=boolSentence(input,table)
else:
posting=oriSentence(input,table)
stop=time.time()
if len(posting)==0:
ui.listWidget.addItem("未检索到相应结果")
return
ui.listWidget.addItem("共花费"+str(stop-start)+"秒,结果如下:")
for node in posting:
no=node[0]
f=open('songci\Doc'+str(no)+'.txt','r')
txt=f.read()
result="Doc"+str(no)+"\n"+"score:"+str(node[1])+"\n"
timer=0
for c in txt:
timer=timer+1
if timer==37:
result=result+"\n"
timer=0
if c in input and c!=" ":
result=result+"["+c+"]"
else:
result=result+c
ui.listWidget.addItem(result)
def convert2(ui,hanlist,idf):
ui.listWidget_2.clear()
input = ui.lineEdit_2.text()
start=time.time()
vq=to_vector(input,hanlist,idf)
#dposting=distances(d,vq)
if flag[0]==False:
ui.listWidget_2.addItem("采用平方归一化方法")
dposting=simplified_distances(norm_docs, vq)
flag[0]=True
else:
ui.listWidget_2.addItem("采用最大值归一化方法")
dposting=simplified_distances(max_docs, vq)
flag[0]=False
doc_sum=0
for i in range(len(dposting)):
if(dposting[i][1]!=0):
doc_sum=doc_sum+1
else:
break
doc_sum=min(20,doc_sum)
stop=time.time()
if doc_sum==0:
ui.listWidget_2.addItem("未检索到相应结果")
return
else:
ui.listWidget_2.addItem("共花费"+str(stop-start)+"秒,结果如下:")
for i in range(doc_sum):
no=dposting[i][0]
f=open('songci\Doc'+str(no)+'.txt','r')
txt=f.read()
result="Doc"+str(no)+"\n"+"score:"+str(dposting[i][1])+"\n"
timer=0
for c in txt:
timer=timer+1
if timer==37:
result=result+"\n"
timer=0
if c in input and c!=" ":
result=result+"["+c+"]"
else:
result=result+c
ui.listWidget_2.addItem(result)
def convert3(ui,hanlist,docs):
ui.listWidget_3.clear()
input = ui.lineEdit_3.text()
start=time.time()
qv=to_01vector(input,hanlist)
dposting=RSV_ranking(docs, qv, c)
doc_sum=0
for i in range(len(dposting)):
if(dposting[i][1]!=0):
doc_sum=doc_sum+1
else:
break
doc_sum=min(20,doc_sum)
stop=time.time()
if doc_sum==0:
ui.listWidget_3.addItem("未检索到相应结果")
return
else:
ui.listWidget_3.addItem("共花费"+str(stop-start)+"秒,结果如下:")
for i in range(doc_sum):
no=dposting[i][0]
f=open('songci\Doc'+str(no)+'.txt','r')
txt=f.read()
result="Doc"+str(no)+"\n"+"score:"+str(dposting[i][1])+"\n"
timer=0
for cc in txt:
timer=timer+1
if timer==37:
result=result+"\n"
timer=0
if cc in input and cc!=" ":
result=result+"["+cc+"]"
else:
result=result+cc
ui.listWidget_3.addItem(result)
#迭代优化
Rlist=[]
RN=10
for i in range(RN):
Rlist.append(dposting[i][0])
for i in range(len(qv)):
if qv[i]!=0:
s=0
for j in range(len(Rlist)):
if docs[Rlist[j]-1][i]!=0:
s=s+1
pi=s/RN
if pi==0:
pi=pi+0.000000001
if pi==1:
pi=pi-0.000000001
ri=(df[i]-s+0.0000000001)/(270-RN)
r[i]=ri
p[i]=pi
c[i]=math.log10(p[i]*(1-r[i])/((1-p[i])*r[i]))
def convert4(ui,hanlist,docs):
ui.listWidget_4.clear()
input = ui.lineEdit_4.text()
start=time.time()
vq=to_01vector(input,hanlist)
lamb=0.7
dposting=MLE_ranking(docs,vq, lamb, dfN)
doc_sum=0
for i in range(len(dposting)):
if(dposting[i][1]!=0):
doc_sum=doc_sum+1
else:
break
doc_sum=min(20,doc_sum)
stop=time.time()
if doc_sum==0:
ui.listWidget_4.addItem("未检索到相应结果")
return
else:
ui.listWidget_4.addItem("共花费"+str(stop-start)+"秒,结果如下:")
for i in range(doc_sum):
no=dposting[i][0]
f=open('songci\Doc'+str(no)+'.txt','r')
txt=f.read()
result="Doc"+str(no)+"\n"+"score:"+str(dposting[i][1])+"\n"
timer=0
for c in txt:
timer=timer+1
if timer==37:
result=result+"\n"
timer=0
if c in input and c!=" ":
result=result+"["+c+"]"
else:
result=result+c
ui.listWidget_4.addItem(result)
#界面启动
app = QtWidgets.QApplication(sys.argv)
MainWindow = QtWidgets.QMainWindow()
ui = Ui_MainWindow()
ui.setupUi(MainWindow)
MainWindow.show()
ui.pushButton.clicked.connect(partial(convert1,ui,wf_table))
ui.pushButton_2.clicked.connect(partial(convert2,ui,hanlist,idf))
ui.pushButton_3.clicked.connect(partial(convert3,ui,hanlist,norm_docs))
ui.pushButton_4.clicked.connect(partial(convert4,ui,hanlist,norm_docs))
sys.exit(app.exec_())