-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaudioloader.py
42 lines (35 loc) · 1.26 KB
/
audioloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from pydoc import TextRepr
import numpy as np
import os
from torch.utils import data
import torchaudio.compliance.kaldi as kaldi
import torchaudio
import torch
class audiodataset(data.Dataset):
def __init__(self,data_dir):
self.wave_info=self.getaudioinfo(data_dir)
def __getitem__(self, index) :
wav,sample_rate,label=self.wave_info[index]
return wav,sample_rate,label
def __len__(self):
return len(self.wave_info)
def getaudioinfo(self,data_dir):
file_paths=[]
for root, directories, files in os.walk(data_dir):
for filename in files:
filepath = os.path.join(root, filename)
file_paths.append(filepath) # Add it to the list.
wavlist=file_paths
wav_info=[]
for path in wavlist:
label0=path.split('//')[-1]
# Get class name
label1=label0.split("\\")[0]
waveform, sample_rate = torchaudio.load(path)
# wav_len=waveform.shape[0]
#label_len=len(label)
wav_info.append((waveform,sample_rate,label1))
return wav_info
if __name__=='__main__':
test_dir = './/data//testwav//'
test_set=audiodataset(test_dir)