-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathutil.py
336 lines (283 loc) · 10.7 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.backends import cudnn
from random import *
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F
class Util(object):
def __init__(self,args):
self.args = args
def print_network(self, model, name):
num_params = 0
for p in model.parameters():
num_params += p.numel()
print(name)
print(model)
print("The number of parameters: {}".format(num_params))
def random_bbox(self):
img_shape = self.args.IMG_SHAPE
img_height = img_shape[0]
img_width = img_shape[1]
maxt = img_height - self.args.VERTICAL_MARGIN - self.args.MASK_HEIGHT
maxl = img_width - self.args.HORIZONTAL_MARGIN - self.args.MASK_WIDTH
t = randint(self.args.VERTICAL_MARGIN, maxt)
l = randint(self.args.HORIZONTAL_MARGIN, maxl)
h = self.args.MASK_HEIGHT
w = self.args.MASK_WIDTH
return (t, l, h, w)
def bbox2mask(self, bbox):
"""Generate mask tensor from bbox.
Args:
bbox: configuration tuple, (top, left, height, width)
config: Config should have configuration including IMG_SHAPES,
MAX_DELTA_HEIGHT, MAX_DELTA_WIDTH.
Returns:
tf.Tensor: output with shape [B, 1, H, W]
"""
def npmask(bbox, height, width, delta_h, delta_w):
mask = np.zeros((1, 1, height, width), np.float32)
h = np.random.randint(delta_h//2+1)
w = np.random.randint(delta_w//2+1)
mask[:, :, bbox[0]+h : bbox[0]+bbox[2]-h,
bbox[1]+w : bbox[1]+bbox[3]-w] = 1.
return mask
img_shape = self.args.IMG_SHAPE
height = img_shape[0]
width = img_shape[1]
mask = npmask(bbox, height, width,
self.args.MAX_DELTA_HEIGHT,
self.args.MAX_DELTA_WIDTH)
return torch.FloatTensor(mask)
def local_patch(self, x, bbox):
'''
bbox[0]: top
bbox[1]: left
bbox[2]: height
bbox[3]: width
'''
x = x[:, :, bbox[0]:bbox[0]+bbox[2], bbox[1]:bbox[1]+bbox[3]]
return x
class Discounted_L1(nn.Module):
def __init__(self, args, size_average=True, reduce=True):
super(Discounted_L1, self).__init__()
self.reduce = reduce
self.discounting_mask = spatial_discounting_mask(args.MASK_WIDTH,
args.MASK_HEIGHT,
args.SPATIAL_DISCOUNTING_GAMMA)
self.size_average = size_average
def forward(self, input, target):
self._assert_no_grad(target)
return self._pointwise_loss(lambda a, b: torch.abs(a - b), torch._C._nn.l1_loss,
input, target, self.discounting_mask, self.size_average, self.reduce)
def _assert_no_grad(self, variable):
assert not variable.requires_grad, \
"nn criterions don't compute the gradient w.r.t. targets - please " \
"mark these variables as volatile or not requiring gradients"
def _pointwise_loss(self, lambd, lambd_optimized, input, target, discounting_mask, size_average=True, reduce=True):
if target.requires_grad:
d = lambd(input, target)
d = d * discounting_mask
if not reduce:
return d
return torch.mean(d) if size_average else torch.sum(d)
else:
return lambd_optimized(input, target, size_average, reduce)
def spatial_discounting_mask(mask_width, mask_height, discounting_gamma):
"""Generate spatial discounting mask constant.
Spatial discounting mask is first introduced in publication:
Generative Image Inpainting with Contextual Attention, Yu et al.
Returns:
tf.Tensor: spatial discounting mask
"""
gamma = discounting_gamma
shape = [1, 1, mask_width, mask_height]
if True:
print('Use spatial discounting l1 loss.')
mask_values = np.ones((mask_width, mask_height))
for i in range(mask_width):
for j in range(mask_height):
mask_values[i, j] = max(
gamma**min(i, mask_width-i),
gamma**min(j, mask_height-j))
mask_values = np.expand_dims(mask_values, 0)
mask_values = np.expand_dims(mask_values, 1)
mask_values = mask_values
else:
mask_values = np.ones(shape)
# it will be extended along the batch dimension suitably
mask_values = torch.from_numpy(mask_values).float()
return to_var(mask_values)
def down_sample(x, size=None, scale_factor=None, mode='nearest'):
# define size if user has specified scale_factor
if size is None: size = (int(scale_factor*x.size(2)), int(scale_factor*x.size(3)))
# create coordinates
h = torch.arange(0,size[0]) / (size[0]-1) * 2 - 1
w = torch.arange(0,size[1]) / (size[1]-1) * 2 - 1
# create grid
grid =torch.zeros(size[0],size[1],2)
grid[:,:,0] = w.unsqueeze(0).repeat(size[0],1)
grid[:,:,1] = h.unsqueeze(0).repeat(size[1],1).transpose(0,1)
# expand to match batch size
grid = grid.unsqueeze(0).repeat(x.size(0),1,1,1)
if x.is_cuda: grid = Variable(grid).cuda()
# do sampling
return F.grid_sample(x, grid, mode=mode)
def reduce_mean(x):
for i in range(4):
if i==1: continue
x = torch.mean(x, dim=i, keepdim=True)
return x
def l2_norm(x):
def reduce_sum(x):
for i in range(4):
if i==1: continue
x = torch.sum(x, dim=i, keepdim=True)
return x
x = x**2
x = reduce_sum(x)
return torch.sqrt(x)
def show_image(real, masked, stage_1, stage_2, fake, offset_flow):
batch_size = real.shape[0]
(real, masked, stage_1, stage_2, fake, offset_flow) = (
var_to_numpy(real),
var_to_numpy(masked),
var_to_numpy(stage_1),
var_to_numpy(stage_2),
var_to_numpy(fake),
var_to_numpy(offset_flow)
)
# offset_flow = (offset_flow*2).astype(int) -1
for x in range(batch_size):
if x > 5 :
break
fig, axs = plt.subplots(ncols=5, figsize=(15,3))
axs[0].set_title('real image')
axs[0].imshow(real[x])
axs[0].axis('off')
axs[1].set_title('masked image')
axs[1].imshow(masked[x])
axs[1].axis('off')
axs[2].set_title('stage_1 image')
axs[2].imshow(stage_1[x])
axs[2].axis('off')
axs[3].set_title('stage_2 image')
axs[3].imshow(stage_2[x])
axs[3].axis('off')
axs[4].set_title('fake_image')
axs[4].imshow(fake[x])
axs[4].axis('off')
# axs[5].set_title('C_Attn')
# axs[5].imshow(offset_flow[x])
# axs[5].axis('off')
plt.show()
def var_to_numpy(obj, for_vis=True):
if for_vis:
obj = obj.permute(0,2,3,1)
obj = (obj+1) / 2
return obj.data.cpu().numpy()
def to_var(x, volatile=False):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x, volatile=volatile)
def flow_to_image(flow):
"""Transfer flow map to image.
Part of code forked from flownet.
"""
out = []
maxu = -999.
maxv = -999.
minu = 999.
minv = 999.
maxrad = -1
for i in range(flow.shape[0]):
u = flow[i, :, :, 0]
v = flow[i, :, :, 1]
idxunknow = (abs(u) > 1e7) | (abs(v) > 1e7)
u[idxunknow] = 0
v[idxunknow] = 0
maxu = max(maxu, np.max(u))
minu = min(minu, np.min(u))
maxv = max(maxv, np.max(v))
minv = min(minv, np.min(v))
rad = np.sqrt(u ** 2 + v ** 2)
maxrad = max(maxrad, np.max(rad))
u = u/(maxrad + np.finfo(float).eps)
v = v/(maxrad + np.finfo(float).eps)
img = compute_color(u, v)
out.append(img)
return np.float32(np.uint8(out))
def highlight_flow(flow):
"""Convert flow into middlebury color code image.
"""
out = []
s = flow.shape
for i in range(flow.shape[0]):
img = np.ones((s[1], s[2], 3)) * 144.
u = flow[i, :, :, 0]
v = flow[i, :, :, 1]
for h in range(s[1]):
for w in range(s[1]):
ui = u[h,w]
vi = v[h,w]
img[ui, vi, :] = 255.
out.append(img)
return np.float32(np.uint8(out))
def compute_color(u,v):
h, w = u.shape
img = np.zeros([h, w, 3])
nanIdx = np.isnan(u) | np.isnan(v)
u[nanIdx] = 0
v[nanIdx] = 0
# colorwheel = COLORWHEEL
colorwheel = make_color_wheel()
ncols = np.size(colorwheel, 0)
rad = np.sqrt(u**2+v**2)
a = np.arctan2(-v, -u) / np.pi
fk = (a+1) / 2 * (ncols - 1) + 1
k0 = np.floor(fk).astype(int)
k1 = k0 + 1
k1[k1 == ncols+1] = 1
f = fk - k0
for i in range(np.size(colorwheel,1)):
tmp = colorwheel[:, i]
col0 = tmp[k0-1] / 255
col1 = tmp[k1-1] / 255
col = (1-f) * col0 + f * col1
idx = rad <= 1
col[idx] = 1-rad[idx]*(1-col[idx])
notidx = np.logical_not(idx)
col[notidx] *= 0.75
img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx)))
return img
def make_color_wheel():
RY, YG, GC, CB, BM, MR = (15, 6, 4, 11, 13, 6)
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros([ncols, 3])
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY))
col += RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG))
colorwheel[col:col+YG, 1] = 255
col += YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC))
col += GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB))
colorwheel[col:col+CB, 2] = 255
col += CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM))
col += + BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR))
colorwheel[col:col+MR, 0] = 255
return colorwheel
COLORWHEEL = make_color_wheel()