forked from awesome-davian/Text2Colors
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
189 lines (145 loc) · 7.03 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import torch
import torch.utils.data as data
import pickle
import os
import numpy as np
from skimage.color import rgb2lab
import warnings
class PAT_Dataset(data.Dataset):
def __init__(self, src_path, trg_path, input_dict):
with open(src_path, 'rb') as fin:
self.src_seqs = pickle.load(fin)
with open(trg_path, 'rb') as fin:
self.trg_seqs = pickle.load(fin)
words_index = []
for index, palette_name in enumerate(self.src_seqs):
temp = [0] * input_dict.max_len
for i, word in enumerate(palette_name):
temp[i] = input_dict.word2index[word]
words_index.append(temp)
self.src_seqs = torch.LongTensor(words_index)
palette_list = []
for index, palettes in enumerate(self.trg_seqs):
temp = []
for palette in palettes:
rgb = np.array([palette[0], palette[1], palette[2]]) / 255.0
warnings.filterwarnings("ignore")
lab = rgb2lab(rgb[np.newaxis, np.newaxis, :], illuminant='D50').flatten()
temp.append(lab[0])
temp.append(lab[1])
temp.append(lab[2])
palette_list.append(temp)
self.trg_seqs = torch.FloatTensor(palette_list)
self.num_total_seqs = len(self.src_seqs)
def __getitem__(self, index):
src_seq = self.src_seqs[index]
trg_seq = self.trg_seqs[index]
return src_seq, trg_seq
def __len__(self):
return self.num_total_seqs
def t2p_loader(batch_size, input_dict):
train_src_path = os.path.join('./data/hexcolor_vf/train_names.pkl')
train_trg_path = os.path.join('./data/hexcolor_vf/train_palettes_rgb.pkl')
val_src_path = os.path.join('./data/hexcolor_vf/test_names.pkl')
val_trg_path = os.path.join('./data/hexcolor_vf/test_palettes_rgb.pkl')
train_dataset = PAT_Dataset(train_src_path, train_trg_path, input_dict)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
num_workers=2,
drop_last=True,
shuffle=True)
test_dataset = PAT_Dataset(val_src_path, val_trg_path, input_dict)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
num_workers=2,
drop_last=True,
shuffle=False)
return train_loader, test_loader
class Image_Dataset(data.Dataset):
def __init__(self, image_dir, pal_dir):
with open(image_dir, 'rb') as f:
self.image_data = np.asarray(pickle.load(f)) / 255
with open(pal_dir, 'rb') as f:
self.pal_data = rgb2lab(np.asarray(pickle.load(f))
.reshape(-1, 5, 3) / 256
, illuminant='D50')
self.data_size = self.image_data.shape[0]
def __len__(self):
return self.data_size
def __getitem__(self, idx):
return self.image_data[idx], self.pal_data[idx]
def p2c_loader(dataset, batch_size, idx=0):
if dataset == 'imagenet':
train_img_path = './data/imagenet/train_palette_set_origin/train_images_%d.txt' % (idx)
train_pal_path = './data/imagenet/train_palette_set_origin/train_palette_%d.txt' % (idx)
train_dataset = Image_Dataset(train_img_path, train_pal_path)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=2)
imsize = 256
elif dataset == 'bird256':
train_img_path = './data/bird256/train_palette/train_images_origin.txt'
train_pal_path = './data/bird256/train_palette/train_palette_origin.txt'
train_dataset = Image_Dataset(train_img_path, train_pal_path)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=2)
imsize = 256
return train_loader, imsize
class Test_Dataset(data.Dataset):
def __init__(self, input_dict, txt_path, pal_path, img_path, transform=None):
self.transform = transform
with open(img_path, 'rb') as f:
self.images = np.asarray(pickle.load(f)) / 255
with open(txt_path, 'rb') as fin:
self.src_seqs = pickle.load(fin)
with open(pal_path, 'rb') as fin:
self.trg_seqs = pickle.load(fin)
# ==================== Preprocessing src_seqs ====================#
# Return a list of indexes, one for each word in the sentence.
words_index = []
for index, palette_name in enumerate(self.src_seqs):
# Set list size to the longest palette name.
temp = [0] * input_dict.max_len
for i, word in enumerate(palette_name):
temp[i] = input_dict.word2index[word]
words_index.append(temp)
self.src_seqs = torch.LongTensor(words_index)
# ==================== Preprocessing trg_seqs ====================#
palette_list = []
for palettes in self.trg_seqs:
temp = []
for palette in palettes:
rgb = np.array([palette[0], palette[1], palette[2]]) / 255.0
warnings.filterwarnings("ignore")
lab = rgb2lab(rgb[np.newaxis, np.newaxis, :], illuminant='D50').flatten()
temp.append(lab[0])
temp.append(lab[1])
temp.append(lab[2])
palette_list.append(temp)
self.trg_seqs = torch.FloatTensor(palette_list)
self.num_total_data = len(self.src_seqs)
def __len__(self):
return self.num_total_data
def __getitem__(self, idx):
"""Returns one data pair."""
text = self.src_seqs[idx]
palette = self.trg_seqs[idx]
image = self.images[idx]
if self.transform:
image = self.transform(image)
return text, palette, image
def test_loader(dataset, batch_size, input_dict):
if dataset == 'bird256':
txt_path = './data/hexcolor_vf/test_names.pkl'
pal_path = './data/hexcolor_vf/test_palettes_rgb.pkl'
img_path = './data/bird256/test_palette/test_images_origin.txt'
test_dataset = Test_Dataset(input_dict, txt_path, pal_path, img_path)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=2)
imsize = 256
return test_loader, imsize