-
Notifications
You must be signed in to change notification settings - Fork 10
/
generate_bwt.py
235 lines (202 loc) · 7.71 KB
/
generate_bwt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
import sys
import json
import fire
import gradio as gr
import torch
import transformers
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
from utils.callbacks import Iteratorize, Stream
from utils.prompter import Prompter
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except: # noqa: E722
pass
from utils.dataset_order import get_dataset_order
def main(
load_8bit: bool = True,
base_model: str = "decapoda-research/llama-7b-hf",
lora_weights: str = "",
prompt_template: str = "", # The prompt template to use, will default to alpaca.
server_name: str = "0.0.0.0", # Allows to listen on all interfaces by providing '0.
share_gradio: bool = False,
testfile_name: str = "",
testfile_idx: str = "",
output_file: str = "",
lora_type: str = "-averaging",
dataset_id: int = 1, # 1 - 5 5
service_begin_id: int = 0 ,
with_replay: bool = False, #
):
print(f"with_replay: {with_replay}")
print(f"dataset_id: {dataset_id}")
print(f"service_begin_id: {service_begin_id}")
print(f"lora_type: {lora_type}")
dataset_order = get_dataset_order(dataset_id)
service_name = dataset_order[service_begin_id]
if with_replay:
if lora_type == "vanilla":
lora_weights = os.path.join("./checkpoint_files", "dataset_id_"+str(dataset_id)+"_with_memoryreplay", str(service_begin_id)+"-"+service_name)
else:
lora_weights = os.path.join("./checkpoint_files", "importance_dataset_id_"+str(dataset_id)+"_averaging_with_memoryreplay", str(service_begin_id)+"-"+service_name+ lora_type)
else:
if lora_type == "vanilla":
lora_weights = os.path.join("./checkpoint_files", "dataset_id_"+str(dataset_id), str(service_begin_id)+"-"+service_name)
else:
lora_weights = os.path.join("./checkpoint_files", "importance_dataset_id_"+str(dataset_id)+"_averaging", str(service_begin_id)+"-"+service_name + "" + lora_type)
if not os.path.exists(lora_weights):
print(f"lora dir {lora_weights} not find!")
sys.exit(1)
assert (
lora_weights
), "Please specify a --lora_weights, e.g. --lora_weights='xxx'"
if with_replay:
if lora_type == "vanilla":
output_dir = os.path.join("./output", "dataset_id_"+str(dataset_id)+"_bwt_with_memoryreplay")
else:
output_dir = os.path.join("./output", "importance_dataset_id_"+str(dataset_id)+"_bwt_with_memoryreplay"+ lora_type)
else:
if lora_type == "vanilla":
output_dir = os.path.join("./output", "dataset_id_"+str(dataset_id)+"_bwt")
else:
output_dir = os.path.join("./output", "importance_dataset_id_"+str(dataset_id)+"_bwt"+ lora_type)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print(f"lora_weights: {lora_weights}")
print(f"output_dir: {output_dir}")
prompter = Prompter(prompt_template)
tokenizer = LlamaTokenizer.from_pretrained(base_model)
#print(torch.cuda.is_available())
#sys.exit(1)
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
model,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
model, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
)
#print(model.config.use_cache)
#sys.exit(1)
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not load_8bit:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def evaluate(
instruction,
input=None,
temperature=0.02,
top_p=0,
top_k=1,
num_beams=1,
max_new_tokens=128,
stream_output=False,
**kwargs,
):
prompt = prompter.generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
generate_params = {
"input_ids": input_ids,
"generation_config": generation_config,
"return_dict_in_generate": True,
"output_scores": True,
"max_new_tokens": max_new_tokens,
}
# Without streaming
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
#print(generation_output)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return prompter.get_response(output)
#return tokenizer.batch_decode(generation_output, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
#return output.split("### Response:")[1].strip()
service_id = service_begin_id
print(f"current service name: {dataset_order[service_id]}... begin generating!")
output_file = os.path.join(output_dir, str(service_id)+"-"+dataset_order[service_id] +"_result.txt")
print(f"output filename: {output_file}")
testfile_idx = "./data/SGD_single_service_test/" + dataset_order[service_id] + "-test.idx"
testfile_name = "./data/SGD_single_service_test/" + dataset_order[service_id] + "-test-LLM.json"
print(f"test filename: {testfile_name}")
if not os.path.isfile(output_file):
result_out = open(output_file, "w", encoding='utf-8')
begin_id = 0
else:
with open(output_file, "r") as f:
lines = f.readlines()
begin_id = len(lines)
f.close()
result_out = open(output_file, "a", encoding='utf-8')
idx_lines = open(testfile_idx).readlines()
data = json.load(open(testfile_name))
for idx_ in range(begin_id, len(data)):
sample = data[idx_]
idx_line = idx_lines[idx_].strip()
Response_list = []
Response = evaluate(instruction = sample['instruction'], input = sample['input'])
Response_list.append(Response)
#print("Input:", input2)
print("Response list:", Response_list)
print("Ground truth:", sample['output'])
print()
# if "NONE" not in Response:
# break
# if sample['output'] != "NONE":
# break
result_out.write(idx_line + "|||" + str(Response_list))
result_out.write("\n")
#break
result_out.close()
print(f"current service name: {service_name}... Generate End!")
if __name__ == "__main__":
fire.Fire(main)