-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
41 lines (35 loc) · 1.45 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
import os
import torch
import _pickle as cPickle
from RL import RL
import time
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
localtime = time.asctime(time.localtime(time.time()))
os.system('clear')
data = []
rl = RL(Network='NN_2',
system_size=3,
p_error=0.1,
capacity=200,
dropout=0.0,
learning_rate=0.00025,
discount_factor=0.95)
rl.train_for_n_epochs(training_steps=100,
evaluation_steps=100,
prediction_steps=10,
epochs=10,
clip_error_term=5,
target_update=10,
reward_definition=0,
optimizer='Adam',
save_model_each_epoch=True,
data=data,
localtime=localtime)
# load network for predictions
PATH = 'network/test.pt'
error_corrected_list, ground_state_list, average_number_of_steps = rl.prediction(num_of_predictions=20,
num_of_steps_for_solving_one_episode=30,
PATH=PATH,
show_network=True,
plot_one_episode=True)