-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathmain.py
executable file
·464 lines (398 loc) · 19.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import multiprocessing as mp
if mp.get_start_method(allow_none=True) != 'spawn':
mp.set_start_method('spawn', force=True)
import argparse
import os
import time
import logging
from datetime import datetime
import numpy as np
import yaml
import pdb
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from tensorboardX import SummaryWriter
torch.multiprocessing.set_sharing_strategy('file_system')
import models
from datasets import GivenSizeSampler, BinDataset, FileListLabeledDataset, FileListDataset
from utils import AverageMeter, load_state, save_state, log, normalize, bin_loader
from evaluation import evaluate, test_megaface
model_names = sorted(name for name in models.backbones.__dict__
if name.islower() and not name.startswith("__")
and callable(models.backbones.__dict__[name]))
class ArgObj(object):
def __init__(self):
pass
parser = argparse.ArgumentParser(description='Multi-Task Face Recognition Training')
parser.add_argument('--config', type=str, required=True)
parser.add_argument('--load-path', default='', type=str)
parser.add_argument('--resume', action='store_true')
parser.add_argument('--evaluate', action='store_true')
parser.add_argument('--extract', action='store_true')
def main():
## config
global args
args = parser.parse_args()
with open(args.config) as f:
config = yaml.load(f)
for k,v in config.items():
if isinstance(v, dict):
argobj = ArgObj()
setattr(args, k, argobj)
for kk,vv in v.items():
setattr(argobj, kk, vv)
else:
setattr(args, k, v)
args.ngpu = len(args.gpus.split(','))
## asserts
assert args.model.backbone in model_names, "available backbone names: {}".format(model_names)
num_tasks = len(args.train.data_root)
assert(num_tasks == len(args.train.loss_weight))
assert(num_tasks == len(args.train.batch_size))
assert(num_tasks == len(args.train.data_list))
#assert(num_tasks == len(args.train.data_meta))
if args.val.flag:
assert(num_tasks == len(args.val.batch_size))
assert(num_tasks == len(args.val.data_root))
assert(num_tasks == len(args.val.data_list))
#assert(num_tasks == len(args.val.data_meta))
## mkdir
if not hasattr(args, 'save_path'):
args.save_path = os.path.dirname(args.config)
if not os.path.isdir('{}/checkpoints'.format(args.save_path)):
os.makedirs('{}/checkpoints'.format(args.save_path))
if not os.path.isdir('{}/logs'.format(args.save_path)):
os.makedirs('{}/logs'.format(args.save_path))
if not os.path.isdir('{}/events'.format(args.save_path)):
os.makedirs('{}/events'.format(args.save_path))
## create dataset
if not (args.extract or args.evaluate): # train + val
for i in range(num_tasks):
args.train.batch_size[i] *= args.ngpu
#train_dataset = [FaceDataset(args, idx, 'train') for idx in range(num_tasks)]
train_dataset = [FileListLabeledDataset(
args.train.data_list[i], args.train.data_root[i],
transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.Resize(args.model.input_size),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),]),
memcached=args.memcached,
memcached_client=args.memcached_client) for i in range(num_tasks)]
args.num_classes = [td.num_class for td in train_dataset]
train_longest_size = max([int(np.ceil(len(td) / float(bs))) for td, bs in zip(train_dataset, args.train.batch_size)])
train_sampler = [GivenSizeSampler(td, total_size=train_longest_size * bs, rand_seed=args.train.rand_seed) for td, bs in zip(train_dataset, args.train.batch_size)]
train_loader = [DataLoader(
train_dataset[k], batch_size=args.train.batch_size[k], shuffle=False,
num_workers=args.workers, pin_memory=False, sampler=train_sampler[k]) for k in range(num_tasks)]
assert(all([len(train_loader[k]) == len(train_loader[0]) for k in range(num_tasks)]))
if args.val.flag:
for i in range(num_tasks):
args.val.batch_size[i] *= args.ngpu
#val_dataset = [FaceDataset(args, idx, 'val') for idx in range(num_tasks)]
val_dataset = [FileListLabeledDataset(
args.val.data_list[i], args.val.data_root[i],
transforms.Compose([
transforms.Resize(args.model.input_size),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),]),
memcached=args.memcached,
memcached_client=args.memcached_client) for idx in range(num_tasks)]
val_longest_size = max([int(np.ceil(len(vd) / float(bs))) for vd, bs in zip(val_dataset, args.val.batch_size)])
val_sampler = [GivenSizeSampler(vd, total_size=val_longest_size * bs, sequential=True) for vd, bs in zip(val_dataset, args.val.batch_size)]
val_loader = [DataLoader(
val_dataset[k], batch_size=args.val.batch_size[k], shuffle=False,
num_workers=args.workers, pin_memory=False, sampler=val_sampler[k]) for k in range(num_tasks)]
assert(all([len(val_loader[k]) == len(val_loader[0]) for k in range(num_tasks)]))
if args.test.flag or args.evaluate: # online or offline evaluate
args.test.batch_size *= args.ngpu
test_dataset = []
for tb in args.test.benchmark:
if tb == 'megaface':
test_dataset.append(FileListDataset(args.test.megaface_list,
args.test.megaface_root, transforms.Compose([
transforms.Resize(args.model.input_size),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),])))
else:
test_dataset.append(BinDataset("{}/{}.bin".format(args.test.test_root, tb),
transforms.Compose([
transforms.Resize(args.model.input_size),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
])))
test_sampler = [GivenSizeSampler(td,
total_size=int(np.ceil(len(td) / float(args.test.batch_size)) * args.test.batch_size),
sequential=True, silent=True) for td in test_dataset]
test_loader = [DataLoader(
td, batch_size=args.test.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=False, sampler=ts)
for td, ts in zip(test_dataset, test_sampler)]
if args.extract: # feature extraction
args.extract_info.batch_size *= args.ngpu
# extract_dataset = FaceDataset(args, 0, 'extract')
extract_dataset = FileListDataset(
args.extract_info.data_list, args.extract_info.data_root,
transforms.Compose([
transforms.Resize(args.model.input_size),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),]),
memcached=args.memcached,
memcached_client=args.memcached_client)
extract_sampler = GivenSizeSampler(
extract_dataset, total_size=int(np.ceil(len(extract_dataset) / float(args.extract_info.batch_size)) * args.extract_info.batch_size), sequential=True)
extract_loader = DataLoader(
extract_dataset, batch_size=args.extract_info.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=False, sampler=extract_sampler)
## create model
log("Creating model on [{}] gpus: {}".format(args.ngpu, args.gpus))
if args.evaluate or args.extract:
args.num_classes = None
model = models.MultiTaskWithLoss(backbone=args.model.backbone, num_classes=args.num_classes, feature_dim=args.model.feature_dim, spatial_size=args.model.input_size, arc_fc=args.model.arc_fc, feat_bn=args.model.feat_bn)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
model = nn.DataParallel(model)
model.cuda()
cudnn.benchmark = True
## criterion and optimizer
optimizer = torch.optim.SGD(model.parameters(), args.train.base_lr,
momentum=args.train.momentum,
weight_decay=args.train.weight_decay)
## resume / load model
start_epoch = 0
count = [0]
if args.load_path:
assert os.path.isfile(args.load_path), "File not exist: {}".format(args.load_path)
if args.resume:
checkpoint = load_state(args.load_path, model, optimizer)
start_epoch = checkpoint['epoch']
count[0] = checkpoint['count']
else:
load_state(args.load_path, model)
## offline evaluate
if args.evaluate:
for tb, tl, td in zip(args.test.benchmark, test_loader, test_dataset):
evaluation(tl, model, num=len(td),
outfeat_fn="{}_{}.bin".format(args.load_path[:-8], tb),
benchmark=tb)
return
## feature extraction
if args.extract:
extract(extract_loader, model, num=len(extract_dataset), output_file="{}_{}.bin".format(args.load_path[:-8], args.extract_info.data_name))
return
######################## train #################
## lr scheduler
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, args.train.lr_decay_steps, gamma=args.train.lr_decay_scale, last_epoch=start_epoch-1)
## logger
logging.basicConfig(filename=os.path.join('{}/logs'.format(args.save_path), 'log-{}-{:02d}-{:02d}_{:02d}:{:02d}:{:02d}.txt'.format(
datetime.today().year, datetime.today().month, datetime.today().day,
datetime.today().hour, datetime.today().minute, datetime.today().second)),
level=logging.INFO)
tb_logger = SummaryWriter('{}/events'.format(args.save_path))
## initial validate
if args.val.flag:
validate(val_loader, model, start_epoch, args.train.loss_weight, len(train_loader[0]), tb_logger)
## initial evaluate
if args.test.flag and args.test.initial_test:
log("*************** evaluation epoch [{}] ***************".format(start_epoch))
for tb, tl, td in zip(args.test.benchmark, test_loader, test_dataset):
res = evaluation(tl, model, num=len(td),
outfeat_fn="{}/checkpoints/ckpt_epoch_{}_{}.bin".format(
args.save_path, start_epoch, tb),
benchmark=tb)
tb_logger.add_scalar(tb, res, start_epoch)
## training loop
for epoch in range(start_epoch, args.train.max_epoch):
lr_scheduler.step()
for ts in train_sampler:
ts.set_epoch(epoch)
# train for one epoch
train(train_loader, model, optimizer, epoch, args.train.loss_weight, tb_logger, count)
# save checkpoint
save_state({
'epoch': epoch + 1,
'arch': args.model.backbone,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
'count': count[0]
}, args.save_path + "/checkpoints/ckpt_epoch", epoch + 1, is_last=(epoch + 1 == args.train.max_epoch))
# validate
if args.val.flag:
validate(val_loader, model, epoch, args.train.loss_weight, len(train_loader[0]), tb_logger, count)
# online evaluate
if args.test.flag and ((epoch + 1) % args.test.interval == 0 or epoch + 1 == args.train.max_epoch):
log("*************** evaluation epoch [{}] ***************".format(epoch + 1))
for tb, tl, td in zip(args.test.benchmark, test_loader, test_dataset):
res = evaluation(tl, model, num=len(td),
outfeat_fn="{}/checkpoints/ckpt_epoch_{}_{}.bin".format(
args.save_path, epoch + 1, tb),
benchmark=tb)
tb_logger.add_scalar(tb, res, start_epoch)
def train(train_loader, model, optimizer, epoch, loss_weight, tb_logger, count):
num_tasks = len(train_loader)
batch_time = AverageMeter(args.train.average_stats)
data_time = AverageMeter(args.train.average_stats)
losses = [AverageMeter(args.train.average_stats) for k in range(num_tasks)]
# switch to train mode
model.train()
end = time.time()
for i, all_in in enumerate(zip(*tuple(train_loader))):
input, target = zip(*[all_in[k] for k in range(num_tasks)])
slice_pt = 0
slice_idx = [0]
for l in [p.size(0) for p in input]:
slice_pt += l // args.ngpu
slice_idx.append(slice_pt)
organized_input = []
organized_target = []
for ng in range(args.ngpu):
for t in range(len(input)):
bs = args.train.batch_size[t] // args.ngpu
organized_input.append(input[t][ng * bs : (ng + 1) * bs, ...])
organized_target.append(target[t][ng * bs : (ng + 1) * bs, ...])
input = torch.cat(organized_input, dim=0)
target = torch.cat(organized_target, dim=0)
# measure data loading time
data_time.update(time.time() - end)
input_var = torch.autograd.Variable(input.cuda())
target_var = torch.autograd.Variable(target.cuda())
# measure accuracy and record loss
loss = model(input_var, target_var, slice_idx)
for k in range(num_tasks):
if torch.__version__ >= '1.1.0':
losses[k].update(loss[k].mean().item())
else:
losses[k].update(loss[k].mean().data[0])
# compute gradient and do SGD step
optimizer.zero_grad()
loss_total = 0.
for k in range(num_tasks):
loss_total = loss_total + loss[k].mean() * loss_weight[k]
loss_total.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# info
if i % args.train.print_freq == 0:
log('Progress: [{0}][{1}/{2}][{3}] '
'Lr: {4:.2g} '
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Data {data_time.val:.3f} ({data_time.avg:.3f})'.format(
epoch, i, len(train_loader[0]), count[0],
optimizer.param_groups[0]['lr'],
batch_time=batch_time,
data_time=data_time))
for k in range(num_tasks):
log('Task: #{0}\t'
'LW: {1:.2g}\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})'.format(
k, loss_weight[k], loss=losses[k]))
# tensorboard logger
for k in range(num_tasks):
tb_logger.add_scalar('train_loss_{}'.format(k), losses[k].val, count[0])
tb_logger.add_scalar('lr', optimizer.param_groups[0]['lr'], count[0])
count[0] += 1
def validate(val_loader, model, criterion, epoch, loss_weight, train_len, tb_logger, count):
raise NotImplemented
num_tasks = len(val_loader)
losses = [AverageMeter(args.val.average_stats) for k in range(num_tasks)]
# switch to evaluate mode
model.eval()
start = time.time()
for i, all_in in enumerate(zip(*tuple(val_loader))):
input, target = zip(*[all_in[k] for k in range(num_tasks)])
slice_pt = 0
slice_idx = [0]
for l in [p.size(0) for p in input]:
slice_pt += l
slice_idx.append(slice_pt)
input = torch.cat(tuple(input), dim=0)
target = [tg.cuda() for tg in target]
input_var = torch.autograd.Variable(input.cuda(), volatile=True)
target_var = [torch.autograd.Variable(tg, volatile=True) for tg in target]
# measure accuracy and record loss
loss = model(input_var, target_var, slice_idx)
for k in range(num_tasks):
if torch.__version__ >= '1.1.0':
losses[k].update(loss[k].item())
else:
losses[k].update(loss[k].data[0])
log('Test epoch #{} Time {}'.format(epoch, time.time() - start))
for k in range(num_tasks):
log(' * Task: #{0} Loss {loss.avg:.4f}'.format(k, loss=losses[k]))
for k in range(num_tasks):
tb_logger.add_scalar('val_loss_{}'.format(k), losses[k].val, count[0])
def extract(ext_loader, model, num, output_file, silent=False):
batch_time = AverageMeter(9999999)
data_time = AverageMeter(9999999)
model.eval()
features = []
start = time.time()
end = time.time()
for i, input in enumerate(ext_loader):
data_time.update(time.time() - end)
input_var = torch.autograd.Variable(input.cuda(), volatile=True)
output = model(input_var, extract_mode=True)
features.append(output.data.cpu().numpy())
batch_time.update(time.time() - end)
end = time.time()
if i % args.train.print_freq == 0 and not silent:
log("Extracting: {0}/{1}\t"
"Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t"
"Data {data_time.val:.3f} ({data_time.avg:.3f})".format(
i, len(ext_loader), batch_time=batch_time, data_time=data_time))
features = np.concatenate(features, axis=0)[:num, :]
features.tofile(output_file)
if not silent:
log("Extracting Done. Total time: {}".format(time.time() - start))
return features
def evaluation(test_loader, model, num, outfeat_fn, benchmark):
load_feat = True
if not os.path.isfile(outfeat_fn) or not load_feat:
features = extract(test_loader, model, num, outfeat_fn, silent=True)
else:
print("loading from: {}".format(outfeat_fn))
features = np.fromfile(outfeat_fn, dtype=np.float32).reshape(-1, args.model.feature_dim)
if benchmark == "megaface":
r = test_megaface(features)
log(' * Megaface: 1e-6 [{}], 1e-5 [{}], 1e-4 [{}]'.format(r[-1], r[-2], r[-3]))
return r[-1]
else:
features = normalize(features)
_, lbs = bin_loader("{}/{}.bin".format(args.test.test_root, benchmark))
_, _, acc, val, val_std, far = evaluate(
features, lbs, nrof_folds=args.test.nfolds, distance_metric=0)
log(" * {}: accuracy: {:.4f}({:.4f})".format(benchmark, acc.mean(), acc.std()))
return acc.mean()
#def evaluation_old(test_loader, model, num, outfeat_fn, benchmark):
# load_feat = False
# if not os.path.isfile(outfeat_fn) or not load_feat:
# features = extract(test_loader, model, num, outfeat_fn)
# else:
# log("Loading features: {}".format(outfeat_fn))
# features = np.fromfile(outfeat_fn, dtype=np.float32).reshape(-1, args.model.feature_dim)
#
# if benchmark == "megaface":
# r = test.test_megaface(features)
# log(' * Megaface: 1e-6 [{}], 1e-5 [{}], 1e-4 [{}]'.format(r[-1], r[-2], r[-3]))
# with open(outfeat_fn[:-4] + ".txt", 'w') as f:
# f.write(' * Megaface: 1e-6 [{}], 1e-5 [{}], 1e-4 [{}]'.format(r[-1], r[-2], r[-3]))
# return r[-1]
# elif benchmark == "ijba":
# r = test.test_ijba(features)
# log(' * IJB-A: {} [{}], {} [{}], {} [{}]'.format(r[0][0], r[0][1], r[1][0], r[1][1], r[2][0], r[2][1]))
# with open(outfeat_fn[:-4] + ".txt", 'w') as f:
# f.write(' * IJB-A: {} [{}], {} [{}], {} [{}]'.format(r[0][0], r[0][1], r[1][0], r[1][1], r[2][0], r[2][1]))
# return r[2][1]
# elif benchmark == "lfw":
# r = test.test_lfw(features)
# log(' * LFW: mean: {} std: {}'.format(r[0], r[1]))
# with open(outfeat_fn[:-4] + ".txt", 'w') as f:
# f.write(' * LFW: mean: {} std: {}'.format(r[0], r[1]))
# return r[0]
if __name__ == '__main__':
main()